Lorentz invariance

Поделиться
HTML-код
  • Опубликовано: 17 дек 2024

Комментарии •

  • @davidqin7033
    @davidqin7033 6 лет назад +5

    Your short lectures on general relativity are unmatched. Watching them with joy and gratitude.

  • @kevinsellers7566
    @kevinsellers7566 5 лет назад +4

    This is incredible. Great explanation of a very difficult subject. Thank you.

  • @davidqin7033
    @davidqin7033 6 лет назад +4

    Super clarity, thank you so much!

  • @CuteBaneling
    @CuteBaneling 5 лет назад +2

    Even though it is short video, this video has incredible quality.

  • @bhzaddybhzolby1705
    @bhzaddybhzolby1705 3 года назад +1

    "That's in violation of the law of Lorentz Invariance, baby."

  • @miguels_modern_life-2460
    @miguels_modern_life-2460 3 года назад +1

    Too good thank you! 👌

  • @masterjames876
    @masterjames876 4 года назад

    I think the square symbol or 'box operator' at the end 18:35 is this d'Alembert operator
    en.wikipedia.org/wiki/D%27Alembert_operator?wprov=sfla1
    And down the rabbit hole we go weeee....

  • @pradeepshekhawat1296
    @pradeepshekhawat1296 3 года назад +1

    can you please suggest me a book for tensor ??

    • @TensorCalculusRobertDavie
      @TensorCalculusRobertDavie  3 года назад +1

      Hello Pradeep. Try here: inis.jinr.ru/sl/vol2/Mathematics/_%D0%B0%D0%BC%D0%B1%D0%B0%D1%80/G.H.Heinbockel,_Tensor_Calculus&Coninuum_Mech/Heinbockel_Tensor_Calc.pdf

    • @pradeepshekhawat1296
      @pradeepshekhawat1296 3 года назад +1

      @@TensorCalculusRobertDavie thank you Sir

  • @amitkumar15020
    @amitkumar15020 4 года назад +1

    Volume element 4D dxdydzdt how is Lorentz invariant... Help please

    • @TensorCalculusRobertDavie
      @TensorCalculusRobertDavie  4 года назад +2

      Hello Amit, and thank you for that question.
      Given dV = dtdxdydz in frame S and dV' = dt'dx'dy'dz' in frame S' moving with constant velocity with respect to the former frame S. We want to show dV = dV'.
      Lets start with the volume element moving along the common x,x' axes so that dy = dy' and dz = dz'. Now we know that dx' = 𝛾dx and dt' = dt/𝛾 so that,
      dV' = dt'dx'dy'dz' = dt/𝛾𝛾dxdydz = dtdxdydz = dV.

  • @abcdef-ys1sb
    @abcdef-ys1sb 6 лет назад

    Thank you sir

  • @20palwinderkaur25
    @20palwinderkaur25 4 года назад +1

    dpxdpydpz/E is lorentz invariant. Help sir🙏

    • @TensorCalculusRobertDavie
      @TensorCalculusRobertDavie  4 года назад +1

      Hello Palwinder. Try using E = hf = h/T then show that you end up with the 4-volume element which is invariant.