A Nice Exponential Equation from SyberMath 😉

Поделиться
HTML-код
  • Опубликовано: 5 фев 2025
  • 🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts)
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermathshorts
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/...
    Follow me → / sybermath
    Subscribe → www.youtube.co...
    Subscribe → www.youtube.co... (shorts)
    ⭐ Suggest → forms.gle/A5bG...
    If you need to post a picture of your solution or idea:
    in...
    #ChallengingMathProblems #ExponentialEquations #Exponentials
    via @RUclips @Apple @Desmos @NotabilityApp @googledocs @canva
    ⭐ A Nice Exponential Equation, x²=2ˣ: • A Nice Exponential Equ...
    PLAYLISTS 🎵 :
    Number Theory Problems: • Number Theory Problems
    Challenging Math Problems: • Challenging Math Problems
    Trigonometry Problems: • Trigonometry Problems
    Diophantine Equations and Systems: • Diophantine Equations ...
    Calculus: • Calculus

Комментарии • 32

  • @moeberry8226
    @moeberry8226 Год назад +1

    It’s actually x=(2n+1)ipi )/(ln(3)+2ipik) where k is also any integer.

  • @krishnamoyghosh6047
    @krishnamoyghosh6047 Год назад +1

    Classic problem. It demands so deep thoughts. Kudos to u. Please keep it up.

  • @mehrdadbasiri9968
    @mehrdadbasiri9968 Год назад +1

    Beautiful one...👌👌👌.

  • @scottleung9587
    @scottleung9587 Год назад

    Nice - I also got the same family of solutions! I love all these trips to the complex world.

  • @vladislavlukmanov4998
    @vladislavlukmanov4998 Год назад +3

    If u had divided by 6^t u would have gotten (5/2)^t+(5/3)^t=1. On the left hand side is an increasing function, on the right is a constant, so it means that the equation has 1 solution at most, and u just might guess t=-1. It is simpler than u presented.

    • @SyberMath
      @SyberMath  Год назад +1

      Totally! Thanks for sharing

    • @leif1075
      @leif1075 Год назад

      @@SyberMath you could could take the ln on both sides at 8:00 right since you can take complex log..and indid forget about the 2n multiple..doesn't that happen to you..thanks for sharing.

  • @francisco-kb7mv
    @francisco-kb7mv Год назад

    The mathematics, I love.

  • @ochukoobrikogho5587
    @ochukoobrikogho5587 Год назад

    Wow! I'm amazed. Great job!

  • @wesleydeng71
    @wesleydeng71 Год назад +2

    1/15 + 1/10 = 1/6 is obvious.

  • @francisco-kb7mv
    @francisco-kb7mv Год назад

    The solution is nice.

  • @RexxSchneider
    @RexxSchneider Год назад

    It's always useful to get a "feel" for what a solution might look like. Obviously we can simplify by writing u = 3^x, and then we know that 15^u and 10^u increase faster than 6^u as u increases. Since the LHS is already bigger than the RHS when u = 0 ( 1+1 > 1), it should become clear that u has to be negative. Trying u = -1 immediately gives a solution (1/15 + 1/10 = 2/30 + 3/30 = 5/30 = 1/6).
    Values of u < -1 will always make the LHS smaller than the RHS and values of u > -1 will always make the LHS bigger than the RHS, because of the rate of change of the exponentials, so that's our sole solution. Of course, we still have to find x = ln(u)/ln(3) = ln(-1)/ln(3) = ln(e^(2nπi + πi) / ln(3) = (2nπi + πi)/ln(3) -- where n is any integer.

  • @goldfing5898
    @goldfing5898 Год назад +1

    First, you should substitute 3^x = t:
    15^t + 10^t = 6^t
    We search for integer solutions first. t = 0 is no solution, since
    15^0 + 10^9 = 1 + 1 = 2 > 1 = 6^0.
    And for every positive t, 15^t + 10^t is greater than 6^t,
    e.g. for t = 1, 15 + 10 = 25 > 6, and these exponential functions are monotonically increasing.
    So t must be negative. An easy to find solution is t = -1, since
    15^(-1) + 10^(-1) = 1/15 + 1/10 = 2/30 + 3/30 = 5/30 = 1/6 = 6^(-1).
    But:
    3^x is positive for any real x, so t = 3^x can actually not be negative...
    So there is no real solution (?)

    • @RexxSchneider
      @RexxSchneider Год назад

      Indeed, but there are complex solutions if you write -1 = e^(2nπi + πi), where n is any integer. Then you can take natural logs of 3^x = -1 to get all the values for x.

  • @michaelcolbourn6719
    @michaelcolbourn6719 Год назад

    Maybe a silly question, but you've given the solution for variable x involving a new unknown variable of n, so how have we solved for x of we don't know n?

    • @maigretus1
      @maigretus1 Год назад +1

      But we do know what n is. n is any non-negative integer (0, 1, 2, 3...). There are an infinite number of solutions.

    • @michaelcolbourn6719
      @michaelcolbourn6719 Год назад

      @@maigretus1 gotcha. Thank you.

    • @moeberry8226
      @moeberry8226 Год назад

      @@maigretus1n can be any integer not just nonnegative. n can be -1 for example.

  • @barakathaider6333
    @barakathaider6333 Год назад

    👍

  • @2012tulio
    @2012tulio Год назад

    3^X = -1
    After that , No real solutions ..

  • @mdatik5517
    @mdatik5517 Год назад

    Help me for solving the exponential equation: y=2^{(y-2)÷2}. Some problems also for the commenters:(3x+1)(4x+1)(6x+1)(12x+1)=5, x^7+1÷x^7=91√7,x^3-1÷x=4,(x^2-2√2x)(x^2-2)=2021,4÷(x^2+1)^2-1÷(x^2-1)^2=1÷4x^2,√(2020+√x)-x=20,(x^3+3x^2-4)^1÷3-x=(x^3-3x+2)^1÷3,(x^3-3x)^2+(x^2-2)^2=4

  • @rakenzarnsworld2
    @rakenzarnsworld2 Год назад

    2/15 + 3/15 = 1/6
    x = -1/3

  • @broytingaravsol
    @broytingaravsol Год назад +2

    x=i(1±2n)π/ln3

    • @moeberry8226
      @moeberry8226 Год назад

      There’s no need for plus or minus since n is any integer.

    • @broytingaravsol
      @broytingaravsol Год назад

      @@moeberry8226 got it

  • @GAMINGTV-tj3on
    @GAMINGTV-tj3on Год назад

    X=(iπ+°°)/ln3 and this

    • @true7781
      @true7781 Год назад

      -"X=(iπ+°°)/ln3 and this"-
      𝒙 = 𝝅𝒊(1 + 2𝒌)/𝑳𝒏 3 =
      𝝅𝒊(1 + 2𝒌)/(𝒍𝒏 3 + 2𝝅𝒍𝒊) =
      𝝅𝒊(1 + 2𝒌)(𝒍𝒏 3 - 2𝝅𝒍𝒊)/[(𝒍𝒏 3)² + (2𝝅𝒍)²] =
      𝝅(1 + 2𝒌)(2𝝅𝒍 + 𝒊(𝒍𝒏 3))/[(𝒍𝒏 3)² + (2𝝅𝒍)²], 𝒊² = - 1, 𝒌,𝒍 ∈ℤ

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    No real solution