TSP

Поделиться
HTML-код
  • Опубликовано: 19 июн 2024
  • In this episode Shahriar takes a detailed look at the Starlink Satellite Dish. The dish was kindly sent by Ken who has done his own initial teardown here:
    • Starlink Teardown: DIS...
    The dish is analyzed layer by layer from the radome down to individual integrated circuits. The RF design, system architecture and many aspects of the overall product are described in details. An X-Ray of the RF stack is also shown which further explores the design of the array.
    www.TheSignalPath.com
    / thesignalpath​
    www.Patreon.com/TheSignalPath
  • НаукаНаука

Комментарии • 446

  • @PixelSchnitzel
    @PixelSchnitzel 3 года назад +632

    Full IC analysis -- YES PLEASE!!! :-) I'm soaking this up. It's still black magic, but at least it's understandable at a high level, thanks to your explanation.

    • @AndrewZonenberg
      @AndrewZonenberg 3 года назад +25

      Yeah I'd love to see it too. I'm quite familiar with digital CMOS reverse engineering but RFIC layout is black magic to me.

    • @PeterHuson
      @PeterHuson 3 года назад +10

      Yes!

    • @jordantekelenburg
      @jordantekelenburg 3 года назад +7

      Yes

    • @RogerDiotte
      @RogerDiotte 3 года назад +3

      LOL Black Magic...Laying out the paper towels around my chair to expunge all the drool and drips in the exciting episode also!

    • @awesamhead
      @awesamhead 3 года назад +3

      Yesssss please..

  • @MegaKFO
    @MegaKFO 3 года назад +347

    I would like to see the IC analysis.

    • @gglovato
      @gglovato 3 года назад +5

      Me too, I'd love to see this as well

    • @fluffy_tail4365
      @fluffy_tail4365 3 года назад +3

      seconding this!

    • @Zeigren
      @Zeigren 3 года назад +1

      Thirding!

    • @artrock8175
      @artrock8175 3 года назад +1

      Fourthing!

    • @flantc
      @flantc 3 года назад

      Yes please!

  • @PedroDaGr8
    @PedroDaGr8 3 года назад +95

    I can't think of anyone more qualified to do this analysis!

    • @Ozzy3333333
      @Ozzy3333333 3 года назад +1

      I can, engineers from my work, we are currently working on 106gbps pam4 with a single lane (diff pair), and 8 in parallel for 800gbps bandwidth.

    • @Thefreakyfreek
      @Thefreakyfreek 2 года назад

      I cant tink of anyone more unqualified than me I just got my rtl sdr and I'm in to bipolar antennas and just learned that bigger does not mean better in antena

    • @cvspvr
      @cvspvr Год назад +1

      @@Ozzy3333333 how much 8k vr porn could you stream with 106gbps?

  • @quieroverduras
    @quieroverduras 3 года назад +40

    I would like to see a full IC analysis. Thanks for the video, Shahriar.

  • @proudsnowtiger
    @proudsnowtiger 3 года назад +85

    Loved that little 100 GHz phased array you popped out half way through. Any chance of more on the design process for that?

  • @richardj163
    @richardj163 3 года назад +31

    The knowledge of RF here is next level!

    • @navadeep.ganesh
      @navadeep.ganesh 3 года назад +8

      Saw this video twice, thrice and I still hear new words!

    • @RiyadhElalami
      @RiyadhElalami 3 года назад +2

      @@navadeep.ganesh hahaha, it is totally a different world. I understood almost nothing.

  • @hpux735
    @hpux735 3 года назад +55

    As always more is better!! An IC analysis would, of course, be appreciated!

  • @nop8051
    @nop8051 3 года назад +19

    Thank you for your insight. I'm now even more impressed that they can justify 500$ price tag.
    I can only bashfully ask for more zoomed in view when explaining minute details of such large board.

  • @sh33pd0g
    @sh33pd0g 3 года назад +45

    Love your channel! I have no background in RF and work in a completely different field but your teaching style is wonderful and I watch every video you make. Thank you for what you do.

    • @campbellmorrison8540
      @campbellmorrison8540 Год назад

      Me neither and have learnt heaps from these videos. I found this which helped me immensely to understand these structures in a little more detail. Incredible really. ruclips.net/video/qs2QcycggWU/видео.html

  • @Chris_Grossman
    @Chris_Grossman 3 года назад +25

    There are many man-years of engineering time in this system. The relatively simple construction is impressive. More detail of both the ICs and context of it's place in the system would be interesting.

  • @connecticutaggie
    @connecticutaggie 3 года назад +12

    Yes, I would love to see a full IC analysis. I am going to be teaching a RF Communications Course at a local University and I would like to (eventually) add a lesson on and intro to phased arrays and beam forming as it is becoming more common in products.

  • @brentnorrod300
    @brentnorrod300 3 года назад +6

    Nice breakdown. This is a well engineered antenna system. I've been in RF/Microwave design for 42 years. I started with mechanically steered RADAR using a single Transmit amplifier into the manifold. Now we're doing Q-band phase arrays. The big BGA in the middle is most likely a SiGe PHP process RFIC. This allows the Digital control core and RF to be grown on the same IC. The RFIC looks to be an 8-channel T/R with each channel having individual Phase and Gain control. The smaller 8 chips are probably the Final Tx amp, and Rx-LNA that feeds the larger chip in the middle of the group. The RFFE-CLK & DATA are the digital control links to the SIGe. My current specialty is the beam steering SiGe control aspects for similar setups with Design verification testing.
    Working in the Defense/Aerospace/Space sectors, I am absolutely blown away by the quality of this consumer product. And I agree, H/V polarization for full duplex.

    • @pizzablender
      @pizzablender 2 года назад +1

      I don't think it is a consumer product. It is a mass-produced prototype, spending investors' money to create a market.
      Trying to make it cheap will come later.

  • @CarlosAcosta-fx2eg
    @CarlosAcosta-fx2eg 3 года назад +42

    Guessing Shahriar probably designed this whole system in his free time and is under strict restrictions not to tell us. :-)

  • @graybeardmicrowave3074
    @graybeardmicrowave3074 3 года назад +13

    Great video!
    They may be getting the circular polarization from the notches on the suspended patch element; not just to electrical lengthen it. Though it does look too symmetrical. On rectangular patches you can generate LHCP or RHCP by trimming two corners (relative to the single feed point) to generate a quadrature resonance along the orthogonal edges. Though the polarization isolation and BW is poor compared to a true quadrature feed.
    On the feed board, it looks like every other column has a single slot with a large chip, and the orthogonal slots with a smaller chip.
    Maybe TX with linear polarization on the bottom patch, and RX with simultaneous LHCP and RHCP on the top patch, with dual LNA and quadrature splitter. That gives them the massive downlink bandwidth.
    What’s the element pitch? Looks much too tight for X-band, so maybe TX and RX elements interdispursed.
    All just a guess on my part, but fascinating array.

  • @Fake0Name
    @Fake0Name 3 года назад +43

    The radome and floating elements look like they're probably made using a PCB lamination process. Fancier board houses can laminate all sorts of interesting things into a PCB stackup, including things like that honeycomb.
    Really, a bunch of components of the antenna look like they're clever uses of existing PCB manufacturing processes.

    • @namibjDerEchte
      @namibjDerEchte 3 года назад +1

      At what kinds of MOQs do these board houses start talking, and how does one find one that starts at a fairly low MOQ (in the monetary sense)?
      I'm involved in a 5.8 GHz relay "plane" design, and using the (currently planned as such) electronically steered phased array antenna FR4 as a structural element (basically one side of a sandwich plate, with honeycomb or foam as the core) would be quite useful from a weight perspective.

  • @TheHuesSciTech
    @TheHuesSciTech 3 года назад +75

    11:01 I think what you mean to say is... hexagons are the bestagons?

  • @Ricard2k
    @Ricard2k 3 года назад +6

    I was waiting for this analysis since I saw Ken´s video. Thanks, Shahriar!
    I loved the "good as new"!

  • @noipv4
    @noipv4 2 года назад +2

    I watched the entire video on a Starlink connection 📡Thanks a lot for the details, especially the X-ray image analysis.

  • @thpths14
    @thpths14 3 года назад +1

    This is my new all time favorite video. Thank you for taking the time to do this!

  • @Mr_i_o
    @Mr_i_o 3 года назад +3

    I work with antennas and radio systems myself, and I gotta say I really appreciate your breakdown and commentary. Concise and thorough.

    • @rvarnum
      @rvarnum 3 года назад +2

      Adjusting CB radio antennas with an allen wrench and a Radio Shack SWR meter hardly makes you an expert.
      LOL, just kidding.

  • @Dicertification
    @Dicertification 3 года назад

    A perfect watch with a morning coffee. Thanks for the video. Extremely insightful.

  • @UNSCPILOT
    @UNSCPILOT 3 года назад +5

    The fact that these receivers only cost 500$ with this level of engineering is seriously impressive, especially for a first generation of the Starlink system, I look forward to the later iterations

    • @Thesignalpath
      @Thesignalpath  3 года назад +6

      It is being sold for less than 1/5th of its cost.

  • @BrandonPoulton
    @BrandonPoulton 3 года назад

    Please to a chip breakdown! This was great!!! Nowhere else could I learn this much so quick.

  • @paulround8501
    @paulround8501 3 года назад +1

    The number of Starlink dish disassembles I have seen and thought, Signal Path needs to do one of these, and here it is, I am not disappointed at all. Oh and yes, full IC analysis is absolutely required for this.

  • @riesmoos
    @riesmoos 3 года назад

    Awesome video, really nice to have a closer look into one of these new lightning arrestors.

  • @ianjuby
    @ianjuby 2 года назад

    Dude - that was fascinating and beyond excellent. I get my starlink this week hopefully, so I'm super stoked.

  • @MrJef06
    @MrJef06 3 года назад +60

    Shariar: 10-14 GHz is still fairly low frequency...
    Me: yeah yeah...
    Shariar (2 minutes later): here is a 100 GHz phased array...
    Me: !!!

    • @ssupernovae
      @ssupernovae 3 года назад +5

      I mean, there are optical phased arrays that are much, much smaller. I'd love to see an analysis of a steerable laser array.
      And thankfully it's only 10-14 GHz since 100 GHz is heavily attenuated by the atmosphere.

    • @heron5045
      @heron5045 3 года назад

      @@ssupernovae Man, watching the vid and reading the comments really makes me wana read into rf magic, it sounds just like my kind of rabit hole.

    • @RayDrouillard
      @RayDrouillard 2 года назад +1

      Ummm, yeah. The technology is a bit different from my old 1.8-2.0 MHz transmitter.

  • @hedleyfurio
    @hedleyfurio 2 года назад +2

    Competent engineer with time and access to unlimited high end equipment and tools results in very informative videos - thanks for making time to share the knowledge 👍

  • @mikeselectricstuff
    @mikeselectricstuff 3 года назад +100

    I wonder if it's an OSP finish rather than bare copper - bare copper would seem a bit risky for something like this.

    • @Thesignalpath
      @Thesignalpath  3 года назад +27

      Interesting. It has tarnished a lot...

    • @voltlog
      @voltlog 3 года назад +12

      @@Thesignalpath I agree, OSP would preserve the copper with no discoloration but in this case it is clearly visible that the copper is unprotected.

    • @DOGMA1138
      @DOGMA1138 3 года назад +11

      Could've been OSPed during manufacturing, but OSP is well organic and really isn't durable, it protects the pads until the solder is applied it's not designed for long term protection it would degrade with time, as it's water based even the moisture in the air is enough to strip it over time, and I'm pretty sure the RF would get rid of what else is left.

    • @swright1967
      @swright1967 3 года назад +6

      It definitely looked like an OSP finish to me. I have seen & processed lots of them. The outer layer copper looked etched ( non glossy) and even though the board had obviously been handled & exposed to the environment, there was not a lot of oxidation. It could be as simple as a benzotriazole (BTA) finish, or possibly a thicker imidazole type ( trade name ENTEK) I don't know if the thicker imidazole coating change RF performance, as they may introduced dielectric variation. I think if the assembly is semi-hermetic, the thinner BTA coating would keep oxidation minimized for a few years.

    • @Zadster
      @Zadster 3 года назад +4

      @@swright1967 Yes, it shouldn't be difficult to assemble at least part of the antenna in a nitrogen atmosphere. The design does look amenable to hermetic sealing.

  • @NomenNescio99
    @NomenNescio99 3 года назад +12

    Awesome I've been waiting for this!

  • @dexsilicium
    @dexsilicium 3 года назад +19

    Great analysis, thanks a lot ! I was wondering what kind of X-ray machine do you use ? Could you be more specific ?

  • @_hammyhamster_
    @_hammyhamster_ Месяц назад

    The best block diagram description of a circuit I have ever heard. Thank You.

  • @jeanie52
    @jeanie52 3 года назад +5

    I love the break down. When Ken did his tear down I looked at some of the close ups and
    then when he said the chips were from ST that tells me that they are cmos or bi-cmos. The power supplies and there voltages seem to say as much. I would think the chips communicat with a form of I2C/JTAG. I would have to look at connections. I have been an RF engineer most of my life. Started with Ham radio in my teens. Microwave in my twenties and Satcom from there. These patches could be H/V from there makeup. With phasing they could be circular. With the PLL in the middle of the board timing is of great concern. To make this work as a circular/steerable array is critical.

  • @rowanjones3476
    @rowanjones3476 3 года назад +1

    I’d been hoping this antenna would find it’s way to your bench since the first video. Thanks for offering your insight - fascinating as always. And yes, I’d love to see a deeper analysis of the RFIC.

  • @Allen.Morrison
    @Allen.Morrison Год назад

    Excellent analysis and explainations. Really enjoyed getting to see how StarLink implemented their phased arrays and how to think through their possible design decisions. My two favorite parts were the antenna D.O.F. analysis, which gave me good ideas about how to design future antennas, and then the 100 GHz array, which I may even use as a comparision in my Master's defense.

  • @Nik930714
    @Nik930714 3 года назад +1

    When i watched the original video from Ken, my first tough was that he should send it to you. I'm really glad that this he did. I've not watched your video yet, but i'm sure its going to be interesting.

  • @hecker..8903
    @hecker..8903 2 года назад

    YES for for full IC analysis! and YES for this type of mailbag stuff analysis..! An excellent video! Thanks!

  • @GregUzelac
    @GregUzelac 3 года назад

    Wow!!! One of the most interesting tear downs EVAH!!

  • @godfreypoon5148
    @godfreypoon5148 3 года назад +1

    1:21 Top left - finally we see how Shahriar can be so smart!
    I need to get one of those!

  • @hillseg
    @hillseg 3 года назад +1

    Thank you! Very interesting topic, please do more!

  • @lucasng3330
    @lucasng3330 3 года назад

    i can repeatedly listen to this video without getting bored and learn new knowledge!. Please do full analysis, Sir! Best Wish.

  • @minibikemadman
    @minibikemadman 2 года назад

    Man such a awesome video. I am a ham radio operator and love RF...its some crazy ish! I just received my starlink and it is so cool to know how it works.

  • @edonohue1
    @edonohue1 2 года назад

    Total interesting and fun. Thank you!! Be great to have you do a teardown of the new rectangular array and do a comparison!

  • @jeffstull2534
    @jeffstull2534 3 года назад +1

    I know zilch about any of this mumbojumbo but was still mesmerized and watched it. Thanks for the next video on this technology.

  • @TNTsundar
    @TNTsundar Год назад +2

    Love your channel. Keep these kind of videos coming. Thanks.

  • @jbrown468
    @jbrown468 3 года назад +1

    "...Two roads diverged in a circuit, and He-
    He explained the one less traveled by,
    And that has made all the difference."
    AMAZING CONTENT!

  • @gregorymccoy6797
    @gregorymccoy6797 3 года назад

    I will be digesting this for some time. A lot more information than I was expecting.

  • @BradleyFarnsworth
    @BradleyFarnsworth 3 года назад +1

    Nice analysis Shahriar! I appreciated to see the Tesseract cameo as well.

  • @boshacka
    @boshacka 3 года назад +10

    Dude you should do a lot of videos on this thing! Besides the IC stuff, I would love to see some more on depth analysis the phase array, maybe you could even replicate it in a 3d array sim and demonstrate the focusing, multi beam, sidelobes, cool stuff! And I honestly think this could get a ton of views, gotta milk that spacex hype

  • @veggieman95
    @veggieman95 3 года назад +8

    been waiting for this video from you for a while

  • @tedvanmatje
    @tedvanmatje 3 года назад +2

    There you go again, Shahriar....luring us AF guys to the RF dark side :)
    Great posting....thanks man!

  • @gymprofessor329
    @gymprofessor329 3 года назад

    I saw the original video and couldn't help but think you would do a fantastic reverse engineering of it. Saw this in my feed and was pumped!

  • @milolouis
    @milolouis 3 года назад

    Yesssss!!!! Noone could do a better RUclips analysis than Mr Path.

  • @mc_cpu
    @mc_cpu 3 года назад

    Came from the recent eevblog video. How have I missed this channel? Better late than never!

  • @MarkFunderburk
    @MarkFunderburk 3 года назад +6

    I've been waiting for this one.

  • @kingraine1
    @kingraine1 3 года назад

    This is amazing, Dr Shahryar

  • @mikeissweet
    @mikeissweet 3 года назад

    Very fascinating piece of hardware!

  • @VJ-kc6qs
    @VJ-kc6qs 3 года назад

    Please continue the brown bag analyses, and it would be excellent to see the IC analysis as well. You're an inspiring engineer Shahriar.

  • @idooggoodi
    @idooggoodi 3 года назад +7

    Please do more mail bag tear downs in future. This was quite interesting.

  • @john-r-edge
    @john-r-edge 2 года назад +1

    The presenter achieves an amazing result - fascinating despite being technically way over my head.

  • @vanniealdamar9386
    @vanniealdamar9386 Год назад

    I'm stay tunned hopping for starlink v2 dish teardown and analysis

  • @supernumex
    @supernumex 3 года назад

    awesome video! would be interesting to go into detail on some of the chips and have a quick look at the datasheets.

  • @willernst8376
    @willernst8376 3 года назад +1

    This is great! You should make a radar. Not a complicated one, but I think that would be very interesting. Not to mention a good visual way of understanding the rf world. Keep up up the videos!

  • @brainkod
    @brainkod 3 года назад +32

    I wish I could get the contents of that eMMC flash IC and do "The Software Path" in parallel with the RF/hardware analysis ;)

    • @iamzid
      @iamzid 3 года назад +3

      i saw a video where a guy soldered a connector onto one of these boards, he decoded the signal and got the software start up to display on his computer. it required a pass code to continue any further into it.

    • @Spacefish007
      @Spacefish007 3 года назад +10

      probably encrypted.. These newer chips have some hardware based encryption built in..
      They have a couple thousend efuses (one time settable bits) which you burn into a key + certificate during manufacturing of your product.
      Once the management processor or the main processor boots up, it start from an on-chip rom, which reads the encrypted first stage bootloader from NAND or QSPI flash into memory, afterwards it´s decrypted, it´s signature is checked an then then executed.. If any of this steps fail, the CPU goes into a failsafe mode..
      First stage bootloader will typically do the same (decryption + signature check) on the second stage bootloader (like uboot or something like that..)
      In most chips with FPGAs, the same is done for the FPGA image as well to protect IP.
      One way to dump at least the software image: attach an external FPGA to the RAM address / data lines (if ram is external) and try to find the decryption key, if online encryption is used for a block device for example.
      Even newer chips have memory encryption though (symetric "random" or fixed (efused) key is used to encrypt memory pages).. Furthermore this is complicated as you have to reverse engineer the memory interleaving and page assignments and so on..

    • @iamzid
      @iamzid 3 года назад +4

      @@Spacefish007 maybe but it sounds like you haven't seen it. the first part of his video features this very same dish, then it cuts to him analyzing his own unruined dish. if you like this you'll like his. ruclips.net/video/38_KTq8j0Nw/видео.html

    • @Spacefish007
      @Spacefish007 3 года назад

      @@iamzid At least that looks promising, as if they left a serial console enbaled, they probably did not lock down the system that much..
      Dumping the eMMC chip from the broken dishy might be an option.

  • @grahamjones5885
    @grahamjones5885 3 года назад

    Excellent analysis! Thanks.

  • @wirtdonners4212
    @wirtdonners4212 2 года назад +1

    Amazing work! Thank you very much! Really good.

  • @riteshjain4805
    @riteshjain4805 3 года назад +1

    Thank you very much for the video! This was a very interesting analysis on your part! Would love to see a detailed IC analysis if possible!

  • @johngord752
    @johngord752 3 года назад

    Very informative and surprisingly understandable.

  • @RiyadhElalami
    @RiyadhElalami 3 года назад +2

    Please, FULL IC ANALYSIS. That would be amazing.
    I love you Shahriar.

  • @Edward-tz7xz
    @Edward-tz7xz 2 года назад

    Magnificent explanation. Thank you.

  • @stevenkenney9473
    @stevenkenney9473 Месяц назад +1

    Such a great analysis. Thank you!

  • @k7iq
    @k7iq 3 года назад +1

    Great video ! It would be neat to have even a partial IC analysis. Could you please if you have a chance, take some more closeups of the IC side of the board ? Was wondering more about their construction of those areas too. Love this one !

  • @Darieee
    @Darieee 3 года назад

    fantastic video .. some IC analysis would indeed be a super cool addition

  • @IanJohnstonblog
    @IanJohnstonblog 3 года назад +1

    Please please please do a detailed IC analysis. This was so educational! Thank you!!

  • @AlfredoMazzinghi
    @AlfredoMazzinghi 3 года назад

    Would love to see IC analysis as well! Great video, I don't know much about antenna design but was very very interesting!

  • @Nick-jz3ic
    @Nick-jz3ic 3 года назад

    Awesome video. Please go into more detail

  • @phiber9
    @phiber9 3 года назад

    amazing analysis. thank you so much!

  • @OpenBuilds
    @OpenBuilds 3 года назад

    Wonderful analysis thank you

  • @Ahem2002
    @Ahem2002 3 года назад +1

    As a traditional VSAT person, this is a game changer for retail satellite internet.

  • @soheilsalmanishabafrouz6493
    @soheilsalmanishabafrouz6493 3 года назад +2

    As always fantastic , I would love to see the IC analysis.

  • @afmedwards
    @afmedwards 3 года назад

    Great video and description. I almost understood it :D

  • @CraigBurden1
    @CraigBurden1 3 года назад

    Very very interesting, thank you for sharing your knowledge of the dark arts! I would have loved a closer view of the populated side of the board

  • @movax20h
    @movax20h 3 года назад +2

    More of this please. I was waiting for Starlink teardown and analysis for long time, and that is just scratching the surface. But good preliminary analysis.

  • @video99couk
    @video99couk 3 года назад

    33:10 Reminds me of what I found back around 1993 when I got my car back from the body shop. The delay didn't work any more on the interior light. Oh, the PCB in the light assembly had been snapped in half and Superglued back together, complete with a snapped diode.
    At first when I saw this thing, I imagined it might look a bit like a Squarial satellite antenna inside (BSB, Squarials and all that). That was for circular polarisation. It doesn't look like that, not at all. You could take a plastic and metal trace sheet out, flip it over, and change which polarisation it received.

  • @saiskanda
    @saiskanda 3 года назад

    Yes full IC analysis please!

  • @jayzinho10
    @jayzinho10 3 года назад

    Sir Shahriar, you are PhD supervisor goals.🥺🤩

  • @rothn2
    @rothn2 3 года назад +1

    Yes, would love to see this x-rayed

  • @avejst
    @avejst 3 года назад

    Great video as always
    Thanks for sharing :-)

  • @balrampillai5314
    @balrampillai5314 3 года назад +1

    Looking forward to an IC Analysis video!

  • @tabajaralabs
    @tabajaralabs 3 года назад

    man, that video was GREAT!!!!! thanks a lot :)

  • @decibel_tastic2869
    @decibel_tastic2869 3 года назад +2

    RHCP/LHCP: might I suggest the element is excited by the linear 14GHz Tx slot dipole, ditto 11/12GHz Rx which when passed via the PCB dielectric to the first circular suspended patch, allows that to reradiate CP, translating Linear to CP and the upper crescent shaped patch acts as a director in the cavity. Net effect is CP element with some directive gain, adequate CP XPI (Cross-polar isolation), and fractional bandwidth performance on the allocated frequencies. CP is absolutely required with LEO satellites, using linear would mean skewing continually , nightmare.

  • @richardwatkins6725
    @richardwatkins6725 3 года назад

    beautiful design

  • @alexscarbro796
    @alexscarbro796 3 года назад +2

    One issue with a gold finish is the required interim layer of nickel which is quite lossy as you go up in frequency (with increasingly shallow skin depth), so for physically long structures (such a broadband delay lines), may sometimes be unfinished and rely on an environmental seal elsewhere, as you suggest.

  • @sorooshrasty9438
    @sorooshrasty9438 3 года назад +5

    Dear Dr. Shahramian, it would be great if you do an IC analysis as well.

  • @kevy1yt
    @kevy1yt 3 года назад +6

    I need some of that magic red fixing tape!

  • @TheM4man
    @TheM4man 3 года назад +2

    So cool! But I miss some measurements! You have SO MEANY and SO COOL instruments that i believe some s-parameters and a link budget estimate is in order :)

  • @ruima2023
    @ruima2023 3 года назад

    excellent video, please do the Full IC analysis!!!!

  • @moremartin320
    @moremartin320 2 года назад

    Thank you for sharing! You did a great job explaining about all the different chips and components on the board. Much appreciated! Now I don't have to open my dish. lol.

  • @robertfenney
    @robertfenney 3 года назад

    Totally awesome!

  • @DannyBokma
    @DannyBokma 3 года назад +9

    I must be dreaming, this is too cool! And available for regular consumers for 500$.