A Nice Infinite Sum

Поделиться
HTML-код
  • Опубликовано: 7 фев 2025
  • 🤩 Hello everyone, I'm very excited to bring you SyberMath Shorts!
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermath
    / @aplusbi
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/...
    Follow me → / sybermath
    Subscribe → www.youtube.co...
    ⭐ Suggest → forms.gle/A5bG...
    If you need to post a picture of your solution or idea:
    in...
    #algebra #counting #geometry #numbertheory #calculus
    via @RUclips @Apple @Desmos @NotabilityApp @googledocs @canva
    PLAYLISTS 🎵 :
    ▶ Trigonometry: • Trigonometry
    ▶ Algebra: • Algebra
    ▶ Complex Numbers: • Complex Numbers
    ▶ Calculus: • Calculus
    ▶ Geometry: • Geometry
    ▶ Sequences And Series: • Sequences And Series

Комментарии • 14

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 14 дней назад +6

    The solution can also be presented as ln(1-r)^-r.

  • @JerrySu-k3n
    @JerrySu-k3n 11 дней назад

    thats a really interesting approach

  • @grrgrrgrr0202
    @grrgrrgrr0202 13 дней назад +4

    You could've gotten rid of the c much more cleanly by integrating over [0, r] instead of taking the indefinite integral.

  • @chaosredefined3834
    @chaosredefined3834 14 дней назад +6

    You had r + r^2 / 2 + r^3 / 3 + ... = -ln(1-r) + c.
    Set r = 0. We have 0 = 0 + c. So... c = 0. No limits needed.

  • @spdas5942
    @spdas5942 11 дней назад

    You made the thing complex by dividing both sides with r. Before division, putting r=0 leads rhs = 0 and lhs = C => C=0. 🎉

  • @yurenchu
    @yurenchu 13 дней назад +2

    Why take the limit of the green expression, when you could just plug in r = 0 into the pink expression before (at 3:14), and determine C from there?

  • @shmuelzehavi4940
    @shmuelzehavi4940 12 дней назад

    The domain of r may be restricted to: -1 < r < 1.

  • @tetsuyaikeda4319
    @tetsuyaikeda4319 13 дней назад

    congrats! your voice has been cured completely.

  • @Dae-Ying-Kim12345
    @Dae-Ying-Kim12345 12 дней назад

    * 安安安 ! *

  • @RashmiRay-c1y
    @RashmiRay-c1y 13 дней назад

    ln(1-r) = -r-r^2/2-r^3/3..... So, the sum is S=-1/r ln(1-r).

  • @yurenchu
    @yurenchu 13 дней назад +1

    _Answer_ : -(1/r)*ln(1-r)
    _Calculation_ :
    Let f(r) = 1 + r/2 + (r^2)/3 + (r^3)/4 + ...
    Let g(r) = r*f(r) = r + (r^2)/2 + (r^3)/3 + (r^4)/4 + ...
    ==>
    g'(r) = 1 + r + r^2 + r^3 + ...
    = 1/(1 - r)
    ==>
    g(r) = ∫ 1/(1-t) dt , from t = 0 to t = r
    = [ -ln(1-r) ] - [ -ln(1-0) ]
    = - ln(1-r) + ln(1)
    = - ln(1-r)
    g(r) = r*f(r) ==>
    -ln(1-r) = r*f(r)
    f(r) = -(1/r)*ln(1-r)
    Check:
    f(0) = 1 + 0/2 + (0^2)/3 + (0^3)/4 + ... = 1
    lim_{r--> 0} f(r) =
    = lim_{r--> 0} [ -(1/r)*ln(1-r) ]
    ... substitute ln(1-r) = x , r = 1 - (e^x) ...
    = lim_{x--> 0} [ -(1/(1-e^x))*x ]
    = lim_{x--> 0} [ (1/(e^x - 1))*x ]
    = lim_{x--> 0} [ x/(e^x - 1) ]
    = lim_{x--> 0} [ (x-0)/(e^x - 1) ]
    = 1/h'(0) , where h(x) = e^x
    ... Note: h'(x) = [e^x]' = e^x ...
    = 1/(e^0)
    = 1/1
    = 1
    ==> checks out!