Proof: Squared Standard Normal is Chi-Squared (Using MGF)

Поделиться
HTML-код
  • Опубликовано: 19 ноя 2024

Комментарии • 7

  • @antonioescamillagarcia1783
    @antonioescamillagarcia1783 2 года назад

    Very clear demonstration. Thank you!

  • @ahmedessam14711
    @ahmedessam14711 4 года назад +1

    you are the best one on you-tube, thank you very much, sir

  • @santiagoestrada7571
    @santiagoestrada7571 Год назад

    Why can we assume that z^2 has de same pdf as z?

    • @joevanvaler392
      @joevanvaler392 7 месяцев назад

      If you seek the expectation of a function g of your random variable Z, in this case, g(Z)=exp(t(Z^2)), then compute int_{-∞}^{+∞}g(z)f(z)dz, where f(z) is the pdf of Z. The key here is that our function g is written as a function of Z, even though you see a Z^2 in there, so we use the pdf of Z to compute the expectation.
      Otherwise, if you wanted to let X=Z^2, then write g as a function of X, then computing the expectation would involve knowing the pdf of X, which we cannot assume when we are trying to derive the MGF of X.

  • @dairaguadalupegarciamaldon6672
    @dairaguadalupegarciamaldon6672 3 года назад

    Thank you so much

  • @sebaabofares8570
    @sebaabofares8570 3 года назад

    Thank you💫

  • @andreshernandocerquerameji2148
    @andreshernandocerquerameji2148 4 года назад

    Thank you....