Can you find area of the Yellow shaded region? | (Quarter circle) |

Поделиться
HTML-код
  • Опубликовано: 30 ноя 2024

Комментарии • 67

  • @nunoalexandre6408
    @nunoalexandre6408 5 месяцев назад +3

    Love it

    • @PreMath
      @PreMath  5 месяцев назад +2

      Glad to hear that! 🌹
      Thanks for the feedback ❤️

  • @DorothyMantoothIsASaint
    @DorothyMantoothIsASaint 5 месяцев назад +2

    For fun, a more convoluted use of intersecting chords:
    1. AE = hypo of △ ADE = 8√2.
    2. Consider whole circle and reflect quarter circle across AO with CD continuing down to pt F. CF and and AB are intersecting chords
    3. AE * EB = CE * EF
    8√2 * EB = 8 * 24 = 192
    EB = 192 / 8√2 = 24/√2 = 12√2
    4. AB = AE + EB = 8√2 + 12√2 = 20√2
    5. AB = hypo of △ ABO so AO = 20√2 / √2 = *20 = r*
    Proceed as in the video...
    .

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 5 месяцев назад +1

    By using the chord theorem or the height altitude triangle theorem ( in a semi circle)
    We have: sq CD= 8.(2r-8)
    -> r= 20
    Area of the yellow segment = 100 pi - 200 = 100. ( pi-2)= 114.16 sq units😊

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @laxmikantbondre338
    @laxmikantbondre338 5 месяцев назад +1

    Complete the circle such that Radius AO meets circle at point X.So AX is a diameter with AO = 8 and OX = 2r -8. Similarly extend CD to meet Circle in point Y. So CD= 16 and DY = 16. Use intersecting chords to find r.
    16*16 = 8*(2r-8)
    Divide by 8
    32=2r-8
    2r=40
    r=20

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @zsoltszigeti758
    @zsoltszigeti758 5 месяцев назад +1

    Think out of the box: expand it to semicircle, F point is at the opposite side on the semicircle. ACD and ACF triangles are similar (ACD angle common, DAC and CAF are both 90 degrees). AC=√(AD^2*5)=√(64*5)=√320 => AF=√(AC^2*5)=√(320*5)=√1600=40 => r=AF/2=20

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @sumanbasak3507
    @sumanbasak3507 5 месяцев назад +2

    Nice solution❤

    • @PreMath
      @PreMath  5 месяцев назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @sergeyvinns931
    @sergeyvinns931 5 месяцев назад +1

    Angle OAB=45 degrees, CD=16, OD=R-8, OC=R, 16^2+(R-8)^2=R^2, 256+R^2-16R+64=R^2, 16R=320, R=20. Area of a sector
    of a circle AOB=pi*R^2/4, area of a friangle ABO=R^2/2, areaof the Yellow shaded region = piR^2/4-R^2/2=114,16.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 5 месяцев назад +1

    The yellow area is a circular segment, and the area is the difference between the sector subtended by arc AB and the triangle formed by the quarter circle center O and chord AB. We need to determine the radius r.
    Aₛ = (90°/360°)πr² - r(r)/2
    Aₛ = πr²/4 - r²/2
    Aₛ = (r²/2)((π/2)-1)
    As OA = OB = r, ∆AOB is an isosceles tight triangle and ∠BAO = ∠OBA = (180°-90°)/2 = 45°. As ∠ADE = ∠AOB = 90° and ∠EAO is common, ∆ADE amd ∆AOB are similar triangles. As OA = OB = r, AD = DE = 8. As DE = 8, EC = 8.
    Draw OC.
    Triangle ∆CDO:
    OD² + DC² = OC²
    (r-8)² + 16² = r²
    r² - 16r + 64 + 256 = r²
    16r = 320
    r = 320/16 = 20
    Aₛ = ((20)²/2)((π/2)-1)
    Aₛ = (400/2)((π/2)-1)
    Aₛ = 200((π/2)-1)
    Aₛ = 100π - 200 ≈ 114.16 sq units

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @stevetitcombe939
    @stevetitcombe939 5 месяцев назад +1

    Triangle ABO is an isosceles triangle with angles OAB and OBA both at 45 degrees.
    Triangles AED and ABO are similar so length DE is the same as length AD = 8. So length CD=16.
    In right-angle triangle CDO, side OD=r-8, side DE=16 and hypotenuse OC=r. Therefore,
    16^2 + (r-8)^2=r^2 which simplifies to
    320/16=r so r=20.
    Area of full circle = pi r^2
    Area of quarter circle =
    (pi r^2) / 4 = 100 pi
    Area of triangle ABO = 1/2 Base x Height = 1/2 . 20 . 20 = 200
    Area of yellow segment = (100 pi) - 200 = 114.159 units^2

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @murdock5537
    @murdock5537 5 месяцев назад +1

    Nice, many thanks, Sir!
    AD = 8 = DE = CE → AQ = 2r = AD + (2r - 8) →
    16(16) = 8(2r - 8) → r = 20 → yellow area = 100(π - 2)

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 5 месяцев назад +1

    AD = 8 => DE = 8 => CD = 16
    r² = 16² + (r - 8)²
    r² = 256 + r² - 16r + 64 = r² - 16r + 320
    16r = 320
    r = 20
    A(yellow) = A(quarter circle) - A(triangle AOB)
    A(yellow) = 1/4 * r² π - 1/2 * r² = 1/4 * 20² π - 1/2 * 20²
    A(yellow) = 1/4 * 20² (π - 2) = 100 (π - 2) ≈ 114.16 square units

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 5 месяцев назад +2

    Intersecting chords theorem:
    (2R-8).8 = 16²
    R = 20 cm
    Area of circular segment:
    A = ½R²(α - sin α)
    A = ½ 20² (π/2 - sin π/2 )
    A = 114,16 cm² ( Solved √ )

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад +3

    R^2=(2*8)^2+(R-8)^2...R=20...Ay=400π/4-20*20/2=100π-200

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!👍🌹
      Thanks for sharing ❤️

  • @zdrastvutye
    @zdrastvutye 4 месяца назад

    due to the linear increase from 0 to r, it must be that l2=l1
    see line 20, and then the endpoint must be on the circle:
    10 print "premath-can you find area of the yellow shaded region"
    20 l1=8:l2=l1:r=(l1^2+4*l2^2)/2/l1
    30 print r:ages=r*r*(pi/4-1/2):print "die gesuchte flaeche=";ages
    40 mass=1100/r:gcol 11:move r*mass,0:move 0,0:plot165,r,r
    50 gcol8:line l1*mass,0,0,0:line l1*mass,0,l1*mass,2*l1*mass:gcol 11:line 0,0,r*mass,r*mass
    60
    premath-can you find area of the yellow shaded region
    20
    die gesuchte flaeche=114.159265
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @soniamariadasilveira7003
    @soniamariadasilveira7003 5 месяцев назад +1

    Gostei muito dessa questão e de sua explicação! Obrigada

    • @PreMath
      @PreMath  5 месяцев назад

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @himo3485
    @himo3485 5 месяцев назад +1

    CE=ED=8 8+8=16
    16*16=8*(2r-8)
    256=16r-64 16r=320 r=20
    AO=BO=r=20
    Yellow Area =
    20*20*π*1/4 - 20*20*1/2
    = 100π - 200 = 314 - 200 = 114

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 5 месяцев назад +1

    AD=8=DE=EC→ Potencia de D respecto a la circunferencia de radio OA=r: 8(2r-8)=(8+8)*(8+8)→ r=20→ Área amarilla =(20²π/4)-(20*20/2) =100(π-2)=114,15926....ud².
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!👍
      Thanks for sharing ❤️

  • @syphaxjuba8420
    @syphaxjuba8420 5 месяцев назад +1

    merci , excellent exercice

    • @PreMath
      @PreMath  5 месяцев назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @KipIngram
    @KipIngram Месяц назад

    Ok, well, BAO is clearly a 45 degree angle, which tells us the length of the double-stroked segments is 8. Now imagine the remainder of the circle (let A', B', and C' be the mirror image points of A, B, and C). Then CD and DC' are both 16, AD is 8, and DA' is 2*DO+8. So we can use the intersecting chords theorem:
    16*16 = 8*(2*DO+8)
    256 = 16*DO + 64
    DO = 192/16 = 12
    So, our radius is 12+8 = 20. Therefore, the quarter circle area is pi*20^2/4 and the unshaded triangle area is 20^2/2, so the yellow area is
    Yellow_Area = pi*100 - 200
    Yellow area = 100*(pi-2)
    Q.E.D.

  • @unknownidentity2846
    @unknownidentity2846 5 месяцев назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The right triangles ADE and ABO are obviously similar. So with R being the radius of the quarter circle we can conclude:
    DE/AD = BO/AO = R/R = 1 ⇒ DE = AD = 8 ⇒ CD = CE + DE = 2*DE = 2*8 = 16
    The triangle CDO is also a right triangle. So we can apply the Pythagorean theorem:
    CO² = CD² + DO²
    CO² = CD² + (AO − AD)²
    R² = 16² + (R − 8)²
    R² = 256 + R² − 16*R + 64
    0 = 320 − 16*R
    ⇒ R = 320/16 = 20
    Now we are able to calculate the area of the yellow region:
    A(yellow)
    = A(quarter circle) − A(right triangle ABO)
    = π*R²/4 − (1/2)*AO*BO
    = π*R²/4 − R²/2
    = π*400/4 − 400/2
    = 100π − 200
    ≈ 114.16
    Best regards from Germany

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent! 👍🌹
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 5 месяцев назад +1

    ABO is an isosceles 🔺
    angle OAB = angle OBA ( two sides are radius of the same circle)
    🔺 DAE
    angle DAE = angle DEA (angle DEA = corresponding angle OBA as OB II DE)
    Hence DE=8
    DC =16
    Now complete the semicircle .Name the other end point of diameter as M
    Hence 8*DM=16*16 ( 16 is the geometric mean of 8 & DM)
    DM =32
    Hence diameter = 32 +8=40
    Radius =20
    Area of shaded portion
    =400π/4 - 1/2*20*20
    = 100π - 200
    =114.159 sq units (approx.)
    Sir
    I only derived radius with the help geometric mean theorem.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @davidseed2939
    @davidseed2939 5 месяцев назад

    without looking
    scale 8=1 then rescale solution
    DC² =4
    OC²=R²
    OD²=(R-1)² = R²-2R +1
    So, R²-2R+5 =R²
    2R=5
    Rescale
    2R=5×8
    R=20
    segment = πR²/4 - R²/2 =
    (R²/4)(π-2)
    Answer100(π-2)

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 5 месяцев назад +1

    Thanks Sir
    That’s very nice
    Good method of solution
    Good luck with glades
    ❤❤❤❤

    • @PreMath
      @PreMath  5 месяцев назад +1

      Many many thanks, dear🌹🙏

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 5 месяцев назад +1

    Mashallah very nice sharing sir❤❤

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for liking

  • @misterenter-iz7rz
    @misterenter-iz7rz 5 месяцев назад +1

    (r-8)^2+16^2=r^2, 16r=64+256=320, r=20, therefore the area is 1/4 20^2 pi-1/2 20^2=20^2(1/4 pi-1/2)=100(pi-2).😊

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 5 месяцев назад +1

    Thank you!

    • @PreMath
      @PreMath  5 месяцев назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 месяцев назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Consider a Quarter of a Circle with Radius equal to 1.
    02) Consider a Function f(X) that is a Straight Line with the folowing Equation : f(X) = - X + 1. This is the Line AB.
    03) Now, consider another Function that is the Perimeter of a Quarter of a Circle defined by the Equation : g(X) = sqrt(1 - X^2)
    04) As the Line CD is divided into two equal parts, one can say that : g(X) = 2 * f(X)
    05) So : sqrt((1 - X^2) = 2 * (- X + 1)
    06) Solving this Equality between Functions we get the following Solutions : X = 1 and X = 3/5 (or X = 0,6)
    07) As AD = 8 and is equal to 2/5 of the Radius : 8 = 2R / 5 ; 2R = 40 ; R = 20.
    08) So : AD = 8 and OD = AO - AD : OD = 20 - 8 = 12
    09) Quarter of a Semicircle Area (QCA) with Radius equal to 20.
    10) QCA = 400 * Pi / 4 ; QCA = 100Pi sq un
    11) Area of Triangle AOB = (20 * 20) / 2 ; Triangle AOB = 400 / 2 ; Traingle AOB = 200 sq un
    12) Yellow Area = Quarter of a Semicircle Area - Area of Triangle AOB
    13) Yellow Area = (100*Pi - 200) sq un ; Yellow Area ~ 114,16 sq un
    ANSWER : The Yellow Area is approx. equal to 114,16 Square Units.
    Best Regards from The Universal Islamic Institute for the Study of Ancient Mathematical Thinking, Knowledge and Wisdom. Cordoba Caliphate.

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent! 👍
      Thanks for sharing ❤️🙏

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 5 месяцев назад +1

    Достроим окружность и продлим отрезки CD и AO до хорды и диаметра. 16*16=8*(2* r-8). r=20.

  • @Tmwyl
    @Tmwyl 5 месяцев назад

    I got this one!

  • @MrPaulc222
    @MrPaulc222 5 месяцев назад +2

    Wow! Not often I'm first here. Let's see if I can solve it though :)
    As ADE is a right isosceles, AD = DE = CE = 8.
    Several ways to find radius. I choose to imagine a full circle and going for intersecting chords.
    16*16 = 8(2r-8)
    256 = 16r-64
    320=16r
    r = 20
    Area of full circle is 400pi, so the quadrant is 100pi
    Area of AOB is (20*20)/2=200
    Yellow area is 100pi-200 = 314.16-200=114.16 un^2
    EDIT: I see you chose the calculate the radius another way.

    • @PreMath
      @PreMath  5 месяцев назад

      Bravo!👍
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад

    Let's use an orthonormal, center O, first axis (OA). We have A(R;0) B(0; R) D(R -8; 0)
    The equation of the circle is x^2 + y^2 = R^2
    C is on the circle and its abscissa is R -8,
    its ordinate is y with (R -8)^2 + y^2 = R^2,
    so R^2 - 16.R +64 +y^2 = R^2, y^2 = 16.R -64,
    So we have C(R -8; 4.sqrt(R -4)) and
    E(R -8; 2.sqrt(R -4)).
    The equqtion of (AB) is x + y - R = 0 and point E is on (AB), so R - 8 +2.sqrt(R -4) - R = 0.
    That gives: 2.sqrt(R -4) = 8, and R -4 = (8 -2)^2,
    and then R = 20.
    The area of the quater circle is (Pi/4).(20^2) = 100.Pi.
    The area of the triangle OAB is (1/2).(20^2 )= 200.
    Finally the yellow area is 100.Pi - 200
    or 100.(Pi -2).

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @deveshagarwal1906
    @deveshagarwal1906 5 месяцев назад +1

    114.29 square units

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!👍
      Thanks for sharing ❤️

  • @waheisel
    @waheisel 5 месяцев назад

    You don't need a calculator to get to 5 digits of the answer if you have that many digits of pi memorized.

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️