Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
The only (real) solution for this problem.nice and easy😃
Very nice and easy solution professor
Nice observation
i reckoned the formula as 3²-7=2, so x=2
There is another solution I think
what is it?
Solving a Nice Exponential Equation from Romania: 3^[(x + 2)/(3x - 4)] - 7 = 2{3^[(5x - 10)/(3x - 4)]}; x = ?3^[(x + 2)/(3x - 4)] > 7, No Complex value for xLet: y = 3^[(x + 2)/(3x - 4)], 3^[(x + 2)/(3x - 4)] - 7 = y - 7 = 2{3^[(5x - 10)/(3x - 4)]} (y - 7)y = 2{3^[(5x - 10)/(3x - 4)]}y = 2{3^[(5x - 10)/(3x - 4)]}{3^[(x + 2)/(3x - 4)]} = 2{3^[(5x - 10 + x + 2)/(3x - 4)]} = 2{3^[(6x - 8)/(3x - 4)]} = 2(3^2) = 18y^2 - 7y - 18 = 0, (y - 9)(y + 2) = 0, y + 2 > 0; y - 9 = 0y = 3^[(x + 2)/(3x - 4)] = 9 = 3^2, (x + 2)/(3x - 4) = 2, x + 2 = 6x - 8, 5x = 10; x = 2Answer check:3^[(x + 2)/(3x - 4)] - 7 = 3^(4/2) - 7 = 22{3^[(5x - 10)/(3x - 4)]} = 2{3^[(10 - 10)/(6 - 4)] = 2(3^0) = 2; ConfirmedFinal answer:x = 2
The only (real) solution for this problem.nice and easy😃
Very nice and easy solution professor
Nice observation
i reckoned the formula as 3²-7=2, so x=2
There is another solution I think
what is it?
Solving a Nice Exponential Equation from Romania:
3^[(x + 2)/(3x - 4)] - 7 = 2{3^[(5x - 10)/(3x - 4)]}; x = ?
3^[(x + 2)/(3x - 4)] > 7, No Complex value for x
Let: y = 3^[(x + 2)/(3x - 4)], 3^[(x + 2)/(3x - 4)] - 7 = y - 7 = 2{3^[(5x - 10)/(3x - 4)]}
(y - 7)y = 2{3^[(5x - 10)/(3x - 4)]}y = 2{3^[(5x - 10)/(3x - 4)]}{3^[(x + 2)/(3x - 4)]}
= 2{3^[(5x - 10 + x + 2)/(3x - 4)]} = 2{3^[(6x - 8)/(3x - 4)]} = 2(3^2) = 18
y^2 - 7y - 18 = 0, (y - 9)(y + 2) = 0, y + 2 > 0; y - 9 = 0
y = 3^[(x + 2)/(3x - 4)] = 9 = 3^2, (x + 2)/(3x - 4) = 2, x + 2 = 6x - 8, 5x = 10; x = 2
Answer check:
3^[(x + 2)/(3x - 4)] - 7 = 3^(4/2) - 7 = 2
2{3^[(5x - 10)/(3x - 4)]} = 2{3^[(10 - 10)/(6 - 4)] = 2(3^0) = 2; Confirmed
Final answer:
x = 2