Solving a Nice Exponential Equation from Romania

Поделиться
HTML-код
  • Опубликовано: 11 янв 2025

Комментарии • 7

  • @yoav613
    @yoav613 Год назад +1

    The only (real) solution for this problem.nice and easy😃

  • @arbenkellici3808
    @arbenkellici3808 Год назад

    Very nice and easy solution professor

  • @MaheshKumar-lx1ku
    @MaheshKumar-lx1ku Год назад

    Nice observation

  • @broytingaravsol
    @broytingaravsol Год назад

    i reckoned the formula as 3²-7=2, so x=2

  • @edcagas4893
    @edcagas4893 Год назад

    There is another solution I think

  • @walterwen2975
    @walterwen2975 Год назад

    Solving a Nice Exponential Equation from Romania:
    3^[(x + 2)/(3x - 4)] - 7 = 2{3^[(5x - 10)/(3x - 4)]}; x = ?
    3^[(x + 2)/(3x - 4)] > 7, No Complex value for x
    Let: y = 3^[(x + 2)/(3x - 4)], 3^[(x + 2)/(3x - 4)] - 7 = y - 7 = 2{3^[(5x - 10)/(3x - 4)]}
    (y - 7)y = 2{3^[(5x - 10)/(3x - 4)]}y = 2{3^[(5x - 10)/(3x - 4)]}{3^[(x + 2)/(3x - 4)]}
    = 2{3^[(5x - 10 + x + 2)/(3x - 4)]} = 2{3^[(6x - 8)/(3x - 4)]} = 2(3^2) = 18
    y^2 - 7y - 18 = 0, (y - 9)(y + 2) = 0, y + 2 > 0; y - 9 = 0
    y = 3^[(x + 2)/(3x - 4)] = 9 = 3^2, (x + 2)/(3x - 4) = 2, x + 2 = 6x - 8, 5x = 10; x = 2
    Answer check:
    3^[(x + 2)/(3x - 4)] - 7 = 3^(4/2) - 7 = 2
    2{3^[(5x - 10)/(3x - 4)]} = 2{3^[(10 - 10)/(6 - 4)] = 2(3^0) = 2; Confirmed
    Final answer:
    x = 2