3D Printed Brushless DC Motor

Поделиться
HTML-код
  • Опубликовано: 7 июл 2024
  • You and your company can try Onshape Professional for free at Onshape.pro/LeviJanssen
    Gain access to project files and support my work directly - / levijanssen
    Join me on Discord - / discord
    Follow me on Instagram - / leviajanssen
    View the CAD files for this project through Onshape: cad.onshape.com/documents/933...
    I built a 3D printed brushless DC (BLDC) motor and motor driver circuit. The entire project - the mechanical design, the drive circuit, and the code - was completed in just three days. The motor ended up being surprisingly powerful. This was technically an extra credit project for a college lab class, but I took it far above and beyond the actual requirements.
  • НаукаНаука

Комментарии • 298

  • @Iandmacb
    @Iandmacb Год назад +8

    Showing the output from manually spinning the motor is a brilliant demonstration.

  • @TrevelyanOO6
    @TrevelyanOO6 Год назад +229

    I’d have worried about shrapnel flying off, considering how the metal parts are secured.

    • @lorispinto436
      @lorispinto436 Год назад +56

      Oh it's a safety feature, when the magnets fly off at Mach 3.6, the lack of magnetic field around the rotor stops the motor 👍

    • @salbahejim
      @salbahejim Год назад +8

      That's what I was thinking too. I was thinking pillows in front of monitors and a face shield for the human target.

    • @bequ3
      @bequ3 Год назад +9

      .I was about to say that those magnets are not that fast because of the small diameter, but assuming a span of 60mm those magnets have a tangential velocity of around 170kph or 105mph (at 15k RPM) 😅 But - based on the cross-sectional view at 0:38 the centre of mass of each magnet is below the surface and no force is applied that could toss them out of there. Which leaves a breakage of the plastic carrier as a potential danger. Considering the yield strength of typical 3D printing filaments and the low weights at work I would bet on the carrier. The loosening of the screw is most probably the biggest concern 🤔
      I think the best approach is to calculate the actual risk and then be better safe than sorry nonetheless

    • @salbahejim
      @salbahejim Год назад +3

      @@bequ3 Or, just prop up pillows and put in a face shield. Doing the calculations are fun, but propping up safety devices will cover you regardless of what the numbers say.

    • @GamingKing545
      @GamingKing545 Год назад

      @@bequ3i would be worried about the plastic shrapnel depending on the infill

  • @gregstafford2155
    @gregstafford2155 Год назад +59

    I think you have more skill then what you give yourself. Making a controller from scratch is remarkable .Can you show the circuit on paper next video

    • @abdillidab2993
      @abdillidab2993 Год назад +5

      I agree to put this together can drive someone crazy. It is really on point for a RUclips video.
      But it is not a circuitry that will last long or is efficient you will need lots of current that comes with heat. P-type pose a bigger resistance than n-type which means heat. Also the Nano cannot supply enough current to the lo side fets, therefore they are not open in time which poses an even bigger resistance which means heat. To connect the gpios directly to the lo side gates is dangerous they will get damaged sooner or later, the fets supply lots of current during closing the pull downs won't change that. I think if you add bjt's to the lo side gates aswell you have a good circuitry to play around with.
      Anyway it doesn't need to be efficient the task was to show how this works and he could not have made a better job.

    • @king_james_official
      @king_james_official 11 месяцев назад +1

      oh come on. yeah it's cool and respectable but "making a controller from scratch" is the easiest part of this whole project

    • @MrAndrew990
      @MrAndrew990 10 месяцев назад

      ​@@king_james_officialclown

  • @steve-adams
    @steve-adams Год назад +15

    I had no idea I could use things I have laying around to make simple BLDCs. Such an eye opener.

  • @moses5407
    @moses5407 Год назад +8

    The absolute clearest explanation of BLDC and controller design I've seen ... And it's axial flux. Thanks!

  • @PCBWay
    @PCBWay Год назад +11

    It feels so good to see you back! Do more uploads pls. Great Vid as always🤩

  • @Crappy.Consumer.Reports
    @Crappy.Consumer.Reports 4 месяца назад

    I have been trying for almost a year to wrap my head around the actual mechanisms that make a DC motor work. I’ve likely watched almost every video on RUclips on this subject but wasn’t able to ever fully grasp it - that is until seeing your video.
    This video and your demonstration just made everything click so well - as another said - the best bldc video on the internet. Very simple and well-explained. Thank you for your work.

  • @gizelle-s
    @gizelle-s Год назад +9

    It's really amazing to see someone wind a magnet and do their best to keep the lines parallel and the coil as tight as possible! There are so many people who just lazily wind magnets and it's infuriating!

    • @andycrask3531
      @andycrask3531 Год назад +7

      Neater tighter coils means better magnetic field, lazy people get lazy fields

    • @OverbuiltByHenry
      @OverbuiltByHenry Год назад

      @@andycrask3531😂😂😂😂😂 patience and wire tention are the key, I wound 36 electromagnets on my last motor build and came out really neat!

  • @mikeconnery4652
    @mikeconnery4652 Год назад

    Great description on the sine wave and awesome results

  • @stefanguiton
    @stefanguiton Год назад

    Excellent work as always!

  • @OMNI_INFINITY
    @OMNI_INFINITY Год назад +2

    That is nice how it functions without any ferrous cores! Designed a pancake coil PCB recently and it would only get hot when about 1A was running through it. Didn't magnetize much if at all so far.

  • @bryanjones1855
    @bryanjones1855 Год назад

    I've had a lot of success with putting air core coils on both sides of the magnets. This eliminates hysteresis from metal cores. It also "pinches" the magnet between the two coil fields instead of thrusting against the bearing, eliminating lateral bearing loads. The smaller the coil/magnet gap, the more force realized. Hope these ideas help with your next version :)

  • @oddjobbob8742
    @oddjobbob8742 Год назад

    It’s so well balanced, even though I didn’t see anywhere n your build were you did anything to balance the rotor. Really nice build.

  • @dfoster9445
    @dfoster9445 6 месяцев назад

    Awesome little motor, and one of the best narrated I've seen.

  • @Leo99929
    @Leo99929 Год назад

    Awesome project, well done!

  • @SuperFredAZ
    @SuperFredAZ Год назад +1

    Very nice, I never had all this technology available when I studied electrical engineering 50+ years ago!

  • @PeTr01
    @PeTr01 9 месяцев назад

    props to you! what a cool project! Every step in this video depicts what I love about engineering

  • @Gin-toki
    @Gin-toki Год назад +17

    Nicely done! Cool little project.
    The motor shaking at around 10:18, was due to it hitting some resonant frequency.

  • @Cam-wu9jw
    @Cam-wu9jw 5 месяцев назад

    This was the most educational motor video I’ve ever watched. Thank you. I loved it

  • @BV-labs
    @BV-labs Год назад

    Great work! I always enjoy whatching someone that really knows what they are doing!

  • @edyt4125
    @edyt4125 Год назад

    Well done!

  • @gkdresden
    @gkdresden Год назад +9

    You can also operate it with an electronic speed controller (ESC). I guess you have eddy current losses in the core screws of the coils. The coils should not be too long. You can use FEMM to have a look at the magnetic field distribution of the permanent magnet disks. You can use a magnetic manifold disk made of low carbon steel at the opposite site of the permanent magnets to the coils to increase the magnetic flux. FEMM shows that it helps a lot. The best ist to use a rotor with two permanent magnet rotor disks with magnetic manifolds at both sides of the coils.
    The coils should not be longer than the length of the permanent magnets. In order to get a good flux penetration, the inner diameter of the coils should not be smaller than the outer diameter of the permanent magnet disks. You can use FEMM for motor optimization. It is a trade-off between maximum flux through the coils and minimum coil resistance. Using more height for the coils will reduce the coil inner resistance but also drop the magnetic flux through the coils. I've found that 6 coils and 8 permanent magnets is a good number. If you need more motor speed, you can reduce to 3 coils and 4 permanent magnets. If you need more torque you can get to 12 coils and 16 permanent magnets.
    You can make two of these motors to use one as a generator for a dynamometer for power tests. You can break the generator by use of a 3-phase rectifier and an active constant voltage load to set the break operating point to a more or less constant motor speed. Until now you just operated the motor under idle conditions, not under a break load. You have to consider that not the motor speed is important but the power and the efficiency under a certain motor speed.

    • @jeffro.
      @jeffro. Год назад

      Maybe. But it's "brake," not "break."
      As in, "Put on the brake to stop."
      NOT, "I'll break your head."
      This guy doesn't need your "help."
      You're just showing off, I know, but you made yourself look like an idjut instead.
      You shouldn't be trying to school him or anyone else.
      He'll go far, doesn't need any "help" from you! 🤪

    • @abdelkrimaldagamseh7754
      @abdelkrimaldagamseh7754 3 месяца назад

      How can I determine the number of turns in each coil?

    • @gkdresden
      @gkdresden 3 месяца назад

      @@abdelkrimaldagamseh7754 the easiest way is make a test coil with a certain number of windings, spin the rotor with the desired speed or with a well determined speed and measure the rms-voltage at the coil.
      Now you have the winding to voltage / speed ratio and you can calculate the winding number for a certain voltage and speed. It is proportional to the voltage and inverse proportional to the speed.
      The wire perimeter should be selected to get less than 7 to 10 A per mm square.

  • @Leo99929
    @Leo99929 Год назад +38

    You can use an odd number of permanent magnets if you have them all the same polarity and have the drive coils alternate polarity. Then you can drive it at half duty cycle to push it away from one and towards the other with one switching element. Then you could use a H bridge to make it 100% duty by reversing the polarity every other cycle. I've built a couple of motors like this with success.

    • @sa31489
      @sa31489 Год назад

      What classes are you taking? Is this EE OR CE? Are you doing masters degree?

    • @saeedgnu
      @saeedgnu Год назад +2

      Sounds like it would be a lot less efficent and get hot faster.

    • @Leo99929
      @Leo99929 Год назад

      @@sa31489 I did my masters over a decade ago.

    • @Leo99929
      @Leo99929 Год назад +4

      @@saeedgnu My motors use around 15uW to turn at around 60-120 rpm running in half duty using a reed switch to trigger. My smaller one has three magnets and six coils. Since there are three magnets and six coils, it's easy enough to use the magnets to trigger one half of the drive wave form.
      Of course, if you want full duty things get a lot more complicated. Maybe you could just use some diodes and a change over reed switch? But you might want more dead spot between phase energization and that wouldn't allow it.
      Transistors would allow precise timings and are very efficient for switching, but with a 15uW motor they massively increase the total system energy consumption. However if you used ball bearings instead of jewel bearings and rewound the coils with thicker wire, you could massively increase the RPM and torque, increasing the power consumption of the motor which would decrease the proportion of the energy consumption that goes to switching.

  • @not-alot-of-options
    @not-alot-of-options Год назад

    I adore the sound of it spinning up at low speed

  • @christophersfactory
    @christophersfactory Год назад

    Wowzers. Sounds like a spaceship. Good on you

  • @josephnicklaus9806
    @josephnicklaus9806 Год назад

    congrats on the 100% dude! you earned it!!

  • @amandahugankiss4110
    @amandahugankiss4110 Год назад

    Super helpful and well presented.
    Thanks!

  • @filmweaver2013
    @filmweaver2013 Год назад

    Excellent! What a funn project

  • @LordCogordo
    @LordCogordo Год назад +1

    first video ever that i've seen of yours, and i have to admit, you got me boy

  • @JohnLauerGplus
    @JohnLauerGplus Год назад +18

    Nice design. I have found that magnets will come out from friction fits over time, so I now slide them into a slot, rather than friction-fit. I make the slot have 1 layer of 3d printed plastic, like 0.1mm or 0.2mm between the bottom of the magnet surface to ensure the can't come out. I even found that crazy glue isn't even good enough as it won't stick to the nickel coating on the magnet that well.

    • @JohnLauerGplus
      @JohnLauerGplus Год назад

      Now you should try driving it from an ESP32 or STM32 with SimpleFOC with an AS5600 measuring the angle of the rotor.

    • @LeviJanssen
      @LeviJanssen  Год назад +11

      Oh, this is only the beginning. Fully custom servo actuators are inevitable. They might be a ways down the line, but they'll happen.

    • @JohnLauerGplus
      @JohnLauerGplus Год назад +2

      @@LeviJanssen Ok, then you should design a hole in the middle so you can run wires through it, so when you create an eventual robot arm you have a way of easily running the wires. Given that this is a 3D printed design, it would finally be easy to do that. Finding strong motors with a hole in the middle is quite hard still, so this could be game changer. Can't wait til you add a planetary gearbox to your design with say a 6:1 ratio so it's backdrivable and you can detect the reverse torque against the motor.

  • @navidmafi
    @navidmafi Год назад

    that was so cool!

  • @stephanc7192
    @stephanc7192 Год назад

    Amazing

  • @lolcec81
    @lolcec81 Месяц назад

    Классная работа!!!!

  • @SeaTaj
    @SeaTaj 9 месяцев назад

    My god i love i can watch this type of content on demand

  • @user-fd4zu7vc1c
    @user-fd4zu7vc1c 2 месяца назад

    Custom controller is sick brah. Going to find another video that dives into that. You are a real G

  • @nikbivation
    @nikbivation Год назад

    this was very useful and entertaining!

  • @JM_Tushe
    @JM_Tushe Год назад

    Pretty dang impressive. 👌

  • @comeradecoyote
    @comeradecoyote Год назад

    You can make your design more efficient by making your coils oblong/ovoid shaped, or triangular;
    And getting bar shaped magnets and pressing them into a drum shaped rotor, set inside the coils.

  • @dubbylabby6068
    @dubbylabby6068 Год назад

    We need more.

  • @kayakMike1000
    @kayakMike1000 Год назад

    A good scale up might be arranging your permanent magnets in a halbach array. This arrangement causes the magnetic field to focus toward your stator electromagnets. It might be interesting to see how much this enhances the motor efficiency. Field strength from the permanent magnets would be somewhat stronger for more mass in magnets. Then an identical arrangement on the othe side of the rotor to make full use of the stator magnetic field.

  • @SpinStar1956
    @SpinStar1956 Год назад

    Great work-SUBSCRIBED !!! 😊

  • @mobileiotapps967
    @mobileiotapps967 Год назад

    Nice design most of the esc i see on youtube are very complicated but yours is easy and simple.

    • @marcobassini3576
      @marcobassini3576 Год назад

      Commercial ESCs have rotor position sensing (through back EMF) and hence keep the rotating magnetic field in sync with the current applied to coils. They never lose sync and always keep the motor running. This toy ESC continuously loses sync (even with no load applied) and hence the motor stalls. It is unusable for everything except RUclips videos.
      Additionally those MOSFETs are driven at 5V maximum (the voltage of the microcontroller output pins, if not even 3.3V!!), which usually it is not enough to turn them fully on, and hence the losses are high. On top of the horrendous losses of the motor (no ferromagnetic core).

  • @cdrbvgewvplxsghjuytunurqwfgxvc

    Cool intro mate! And cool project!

  • @chrischris8550
    @chrischris8550 Год назад

    Great video!
    Miss a few more lectures and provide us with a few more videos please.

  • @ElectricFuture
    @ElectricFuture Год назад +1

    Might try and build this one, been getting into 3D printing recently, boy is it a tinker. I feel like there are 20 puzzles to solve before getting consistently accurate durable prints. Last was bed adhesion, now I’m working on dimensional accuracy. Spent ten hours on an aerosol design and it was way off

  • @johnstratairious7936
    @johnstratairious7936 5 месяцев назад

    Great job pal. nice little motor...super fast. working on something similar.

  • @BlondieSL
    @BlondieSL Год назад

    Nice project. But DANGGGG!!! Love that scope!

  • @alfabsc
    @alfabsc Год назад

    I hope you got an A! I love how you use your fingers as temperature probes. Good job at adjusting for minimum smoke. 😃

  • @OZtwo
    @OZtwo Год назад

    very very cool!!

  • @michaelbrister7714
    @michaelbrister7714 Год назад +2

    Wish I would’ve been recommended this channel before I invented the worlds most complicated esc lol. Nice video! Subbed

  • @user-ez8kx3zw4g
    @user-ez8kx3zw4g Год назад

    Mind Blowing! You pushed this thing to rotate! Now seriously. Some effectiveness measuring, or, may be, Hal sensors for feedback, or something not so childish. Nothing.

  • @Roomsaver
    @Roomsaver Год назад +4

    You should modify the 3D print for the rotor and add fan blades, I wanna see what kind of CFM it can hit. You should also measure what torque it’s producing

  • @B_M_Visuals005
    @B_M_Visuals005 Год назад

    That motor is great 😃

  • @gljames24
    @gljames24 Год назад +2

    You made an axial flux motor as extra credit?! That's both insane and awesome!

  • @OMNI_INFINITY
    @OMNI_INFINITY Год назад +1

    Wow those rigol visuals are like visuals at a rave party. Maybe better. So pretty.

  • @BloodyMobile
    @BloodyMobile Год назад

    I wonder how much torque this little beauty could create with a small gearbox. It does have a lot of speed.
    Over 10k with a motor built from scratch is nothing to laugh at, that's fricking impressive at the very least.

  • @LonersGuide
    @LonersGuide Год назад +4

    Pretty dang cool, but you might want to test things within some sort of lexan box or at least have a scatter shield up for yourself in case that thing grenades.

  • @HaraldSchmittjun
    @HaraldSchmittjun Год назад

    After your impressive explanation i can finally get rid of my combustion engine in my car and replace it with a DIY brushless motor. Future is now.

  • @stephanc7192
    @stephanc7192 Год назад

    You make amazing videos
    From an engineer

  • @okiiPL
    @okiiPL Год назад +2

    To limit the current at the start you should implement u/f=const

    • @matsv201
      @matsv201 Год назад

      He have a adreno right there. He could just sence the how far it is behind I phase by sensing the current.
      Really, realistically he would only need to do that on one phase because they propobly is about as far behind all three

  • @hairyballbastic8943
    @hairyballbastic8943 3 месяца назад

    You should upload those sounds it made without the music, really beautiful stuff

  • @FourZet
    @FourZet Год назад

    Wow, such RPM seems pretty remarkable for such design to me. I wonder if it could get even better if you added second plate with magnets on the opposite side.

  • @orangehatmusic225
    @orangehatmusic225 Год назад +4

    You are brave sitting that close to spinning magnets that can fly out at 12k rpm with no shielding.

    • @BlondieSL
      @BlondieSL Год назад +2

      Yeah, that was not good, to be honest.
      If his prof sees this video or if he does that live, I can see him losing marks on his project for not instituting any safety protocols.
      The perm mags where not glued down, as he said. Only 2 sticking together via mag force.
      THOSE COULD RELEASE!
      So not only could he get injured, but anyone around.
      Also, he had no shielding to protect his equipment from flying shrapnel, so that gorgeous scope could get a mag right through the screen.... and I mean RIGHT THROUGH. Ain't no warranty covering that! LOL

    • @lerikhkl
      @lerikhkl Год назад

      I'd say pretty reckless unfortunately! Pretty cool project nonetheless

  • @randomvideoguy
    @randomvideoguy Год назад

    Amazing! But i really need the driver circuit now!

  • @Enderbro3300
    @Enderbro3300 Год назад

    Thats amazing XD I wanna try tossing one of those on an rc plane and see how it does

  • @ksitau
    @ksitau Год назад +2

    I always wonder what is the efficiency of such motors and how does it compare to manufactured ones

  • @ilanmagen
    @ilanmagen Год назад +3

    I am so glade no magnet hit you

  • @laharl2k
    @laharl2k Год назад +3

    youd probably be able to go much faster if you had a feedback loop so that you can accelerate the fastest without loosing syncronization as with your open loop, all you need is 6 resistor and 3 ADC pins on your arduino.

  • @TheThaiLife
    @TheThaiLife Год назад

    I think you got your extra credit.

  • @timenotspaceproduction
    @timenotspaceproduction 19 дней назад

    i like realizing how little i know about stuff

  • @ra7a
    @ra7a Год назад +1

    It would be cool to se a version where the coils are on both sides of the rotor

  • @andrewmcfarland57
    @andrewmcfarland57 10 месяцев назад

    Well, they weren't SAFETY glasses, but at least he kept going till it failed. 😀 Excellent work!

  • @str8upkickyaindanuts289
    @str8upkickyaindanuts289 Год назад +1

    Nice job! But if you're going for the "extra" in extra credit you should have built a charge pump for the high side gate drive and used all N-channel fets. We need over engineered not just working designs! haha

  • @rezamashhadi55
    @rezamashhadi55 Год назад

    good I will subscribe to he's channel

  • @roycun5013
    @roycun5013 Год назад

    Kudos.. I give u an " A "

  • @msmith2961
    @msmith2961 Год назад

    Any faster and that motor would have become a claymore!

  • @Lifesabishi
    @Lifesabishi Год назад

    "i dont know what that was" *tinkers* "i turned her up lets send it" 😂this guy would do well racing cars.

  • @ScalarYoutube
    @ScalarYoutube Год назад +1

    Can you measure how much torque it produces throughout the range of RPMs?

  • @coledavidson5630
    @coledavidson5630 Год назад

    That motor spinning up sounded so sci fi

  • @nhacofaco2615
    @nhacofaco2615 Год назад

    Awesome! I really love your videos, I meet you with those coil gun videos, are you going to work back on that one day? I really liked it 😅

  • @cinorom3803
    @cinorom3803 Год назад

    Nice!! I think luck may have been A factor in the balancing. Still, Excellent!!!

  • @quinnobi42
    @quinnobi42 Год назад +1

    I'm sure someone could take the sound from the motor and turn that into samples to use as a digital instrument. I'm kind of interested to see what that would sound like.

  • @suki4410
    @suki4410 Год назад

    It hurts, when i have to watch it to the end.

  • @emiliogonzalezmadero8619
    @emiliogonzalezmadero8619 Год назад +1

    Hello, I want to test your project, but I have a question. do you have a schematic of the circuit you made on the breadboard to control the brushless motor?

  • @blacklabel6223
    @blacklabel6223 Год назад

    Amazing job! I’d start looking into some kind of shielding or retention incase anything let’s loose. At 15k, assuming you have a 30mm diameter magnet circle, those magnets are doing 75 meters per second, enough to really break stuff if something happened. How does it work with a load? I’m not super familiar with motor design.

  • @Engineering_Science
    @Engineering_Science 11 месяцев назад

    8:19 - Wow that is super quiet. Excellent explanation. Can you provide the mosfet switching circuit, why does it need P and N channel mosfets is it due to polarity?

  • @user-xe8oi5oq6c
    @user-xe8oi5oq6c Год назад

    Hey dude, nice vid! Now add the second set of coils from upside! You'll double your power and usage of magnets!
    BTW 3d printing is mostly not strong enough for high performance motors.

  • @DeepRafterGaming
    @DeepRafterGaming Год назад

    the sine wave is actually not the most efficcient way to drive a bldc motor. When the magnet is far away from the coil you want the maximum voltage thus torque on that coil.

  • @bigh8438
    @bigh8438 Год назад

    wow. next video, extracting materials from ores to build a car

  • @OMNI_INFINITY
    @OMNI_INFINITY Год назад

    That 2 magnet, 3 coil design has been shown to function? Seems the perm mags would maybe get stuck between 2 electromags.

  • @FunTat-hk4ko
    @FunTat-hk4ko Год назад

    It was great Can I ask what kind of metal is the metal part of the rotor of the BLdc motor, which has a magnet inside, that does not take the metal from the outside, even though it is not aluminum? Thank you in advance

  • @acolize8883
    @acolize8883 Год назад

    Nice job! You ever watch any of lasersaber’s content? He does a lot of work with high efficiency motors and such

  • @primorec17
    @primorec17 Год назад

    Nice motor, now try addi g back emf regenx coils from Thane Heins quantum motor❤❤

  • @duseksp1
    @duseksp1 Год назад

    How much of the input energy could be recovered with a set coils on the other side of the rotor?

  • @FelipeMendez
    @FelipeMendez Год назад

    I’m interested in a angle sensor to use bldc a robot motors is it posible?

  • @sierraecho884
    @sierraecho884 8 месяцев назад

    I hope you wear protective glases at 15.000 RPM, one of those magnets can come flying your way or a shattered plastic piece.

  • @zeph0shade
    @zeph0shade Год назад +2

    3:30 but... what happens when the motor spins fast enough to overwhelm the magnetism holding them together? Won't they fly off in all directions? 🤔

  • @phrozenwun
    @phrozenwun Год назад +1

    Larger shaft low grade torx to attach the coils to the frame would make the flux more effective (at the expense of some cogging). Comment mostly for algo... I'm sure you considered that.
    And.. I don't usually go here, but please put some shielding between you and those high angular velocity components - even a section of a two liter soda bottle would absorb most of any RUD. 2*pi*2in *12500 rpm ~= 150mph shrapnel

    • @DMoj
      @DMoj Год назад

      I was thinking just an upside down tupperware container over atleast the motor. It probably wouldn't affect visibility much and be enough to drastically reduce the danger should the motor decide to deconstruct itself

  • @chrisoakey9841
    @chrisoakey9841 Год назад

    Looks good, but wouldn't it make sense to have a second set of coils above the permanent magnets?

  • @picramide
    @picramide Год назад

    Did you add flyback diodes or do you rely on internal avalanche action to protect MOSFETs?