Calculate area of the Blue shaded Rectangle | Semicircle | Important Geometry skills explained

Поделиться
HTML-код
  • Опубликовано: 6 фев 2025

Комментарии • 99

  • @procash1968
    @procash1968 Год назад +8

    Fantastic. What a seemingly unsolvable problem and what an amazing solution
    Thanks PreMath Guru Ji

    • @PreMath
      @PreMath  Год назад

      You are very welcome!
      So nice of you, dear
      Thank you! Cheers! 😀

  • @JLvatron
    @JLvatron Год назад +3

    Wow! Amaze!

    • @PreMath
      @PreMath  Год назад

      So nice of you.
      Thank you! Cheers! 😀

  • @vara1499
    @vara1499 Год назад +5

    Wish you were my school teacher. Thank you for the way the problem was solved. Very methodical.

    • @PreMath
      @PreMath  Год назад

      Wow, thanks!
      So nice of you, dear 😀

    • @rey-dq3nx
      @rey-dq3nx Год назад

      That would be great if he can teach kids at a lower level to prepare them for college level math but Mr Pre Math is a professor at a university. Isn’t that right, Mr Pre Math?

  • @اممدنحمظ
    @اممدنحمظ Год назад +1

    تمرين جميل جيد . رسم واضح مرتب . شرح واضح مرتب . شكرا جزيلا لكم والله يحفظكم ويرعاكم ويحميكم جميعا . تحياتنا لكم من غزة فلسطين .

    • @PreMath
      @PreMath  Год назад

      So nice of you, dear
      Thank you! Cheers! 😀

  • @MrPaulc222
    @MrPaulc222 Год назад +1

    That one was much juicier. Thanks. Remembering to break it down into identities looks paramount.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @bigm383
    @bigm383 Год назад +6

    Your approach to these minimal information projects is fascinating!🥂😀❤

    • @PreMath
      @PreMath  Год назад +1

      Glad you think so.
      Thank you! Cheers! 😀

  • @soli9mana-soli4953
    @soli9mana-soli4953 Год назад +2

    Call G the opposite of C along the diameter in the semicircle, then I noticed a similitude between GEC and DEC triangles (because they are rectangles and have an angle in common)
    GC : EC = EC : DC
    2r : 12sqrt(3) = 12sqrt(3) : DC
    and we get
    DC = 216/r
    Area = r*216/r = 216

    • @harikatragadda
      @harikatragadda Год назад +1

      This is the simplest way to do it. Nice!

  • @ayushshinde118
    @ayushshinde118 Год назад +4

    you can construct a perpendicular to the chord of EC and OC would be length of the rectangle since its the radius of the circle and CD would be breadth and then use similarities
    We get,
    L/6√3=12√3/B
    LB=6√3*12√3=216
    (I have taken BC as length and AB as breadth)

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀

  • @m.t.v8011
    @m.t.v8011 Год назад +3

    What a explanation premath

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @wackojacko3962
    @wackojacko3962 Год назад +2

    Awesome! I think I'm ready now too tackle a Millineum Prize Prize Problem . I need the money!🙂

    • @PreMath
      @PreMath  Год назад +1

      Good luck!
      Thank you! Cheers! 😀

  • @KAvi_YA666
    @KAvi_YA666 Год назад +1

    Thanks for video.Good luck sir!!!!!!!!!!!!

    • @PreMath
      @PreMath  Год назад +1

      So nice of you

  • @montynorth3009
    @montynorth3009 Год назад +6

    Interestingly, point E can be moved to coincide with point F and we then have a square FBCO with the diagonal of 12 root 3.
    The area of that square is given by the formula 1/2 x diagonal squared.
    1/2 x (12 root 3 )^2 = 216.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

    •  Год назад +1

      If I move E to coincide with F the resulting square doesn't have. diagonal of 12 root 3 thus I don't understand your reasoning

    • @murdock5537
      @murdock5537 Год назад

      @ Agree. If CE = k → CF = r√2 ≠ k

    • @georgebliss964
      @georgebliss964 Год назад

      @ EC is a given dimension which remains constant, but the radius of the circle is not constant and will increase in value as point E moves towards point F.

    • @thewolfdoctor761
      @thewolfdoctor761 Год назад +1

      @@georgebliss964 Ah, clever.

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 Год назад +1

    Draw a perpendicular OG to EC. Join OE. By calculations of angles. OD = OG. So DE = 6*sqrt3. Angle OCE = 30.
    So DC = 18, OC = 12. So Area ABCD = 12*18 = 216

    • @ybodoN
      @ybodoN Год назад +1

      This particular case is just as remarkable as when ∠OCE = 45°😉

  • @CharlesB147
    @CharlesB147 Год назад +1

    Oh, that's a lovely little trick.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @jesminakter2577
    @jesminakter2577 Год назад +2

    Awesome

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @nareshkange2978
    @nareshkange2978 7 месяцев назад +1

    The area of the rectangle is(1/2)*semicircle chord square. We can solve it by shortly if CF is the radius of your drawn figure of semicircle, then by tangent triangle are ∆ EDC & ∆ FEC are congruent triangles, so we have EC/FC=DC/EC, EC^2=FC*DC, 12√3 * 12√3= 2r * (x+r), 432= 2r * (x+r), 216= r * (x+r) = area of rectangle

  • @michaelkouzmin281
    @michaelkouzmin281 Год назад +2

    I dare say there is some room left for optimization: if we leave aside EA and use only DE for our workout we will have a slight simplified process:
    1) Let h= DE;
    2) r^2= = h^2+x^2 => h^2= r^2-x^2;
    3) (12*sqrt(3))^2= (r+x)^2+ h^2;
    4) lets substitute h^2:
    432= (r+x)^2+ (r^2-x^2);
    432= r^2+x^2+2rx+r^2-x^2;
    432=2r^2+2rx
    AreaBlue = r^2+rx= 432/2=216.

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀

  • @bsmith6276
    @bsmith6276 Год назад +2

    Lets call the other end of the semicircle's diameter point G. Now draw EG.
    Triangle EGC is a right triangle from angle GEC subtending the diameter GC.
    Triangle EDC is given as a right triangle.
    Triangles EDC and GEC share common angle ECD/GCD.
    Then triangles EDC and GEC are similar triangles.
    From similar triangles we have GC/CE = CE/ED.
    CE = 12*sqrt(3) is given.
    Let the radius be r, then diameter GC equals 2*r and the height of the rectangle is BC=r.
    CD is the length of the rectangle, call that x.
    The area of the rectangle can be expressed as CD*BC = r*x.
    Now just substitute and simplify: GC/CE = CE/ED -> (2*r)/(12*sqrt(3)) = (12*sqrt(3))/x -> r*x = 216.
    The area of the rectangle is 216.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @spiderjump
    @spiderjump Год назад +1

    Let r be the radius of the semicircle. And OD be a.
    DE^2= r^2 -a^2
    By Pythagorean theorem,
    DE^2 + CD^2= 144•3
    r^2 -a^2 +(r+a)^2=144•3
    2r^2 + 2ar=144•3
    r(r+a)=216
    Area of blue rectangle = r(r+a)=216

  • @vierinkivi
    @vierinkivi Год назад +2

    otetaan taas yksinkertaisin ehdot täyttävä tapaus. Piste E siirretään puoliympyrän vasempaan nurkkaan . Ala on 12*sqrt3 * 6*sqrt3.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @ndyebomahlati2280
    @ndyebomahlati2280 Год назад +1

    Yeah 😊 for the first time I say wow, I didn't see it wow

    • @PreMath
      @PreMath  Год назад

      So nice of you.
      Thank you! Cheers! 😀

  • @EPaozi
    @EPaozi Год назад +1

    On peut librement faire varier l'angle DCE. Prenons 45°. OCBF (ou ABCD, c'est le même) est alors un carré de coté c et dont la diagonale est 12.3^0,5 . Ce qui donne : 2c^2=(12.3^0,5)^2 c^2=216

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @Saxysaboy77
    @Saxysaboy77 Год назад +2

    Wow

    • @PreMath
      @PreMath  Год назад

      So nice of you.
      Thank you! Cheers! 😀

  • @stephenrimmer5364
    @stephenrimmer5364 Год назад

    Can you show me how to calculate covariance correlation coefficient please

    • @PreMath
      @PreMath  Год назад +1

      Hello dear,
      Please send an email to:
      premathchannel@gmail.com
      Thanks for asking. Cheers

  • @theoyanto
    @theoyanto Год назад +1

    Nice problem, square root of 3 was my homing beacon, then a spoonful of Thales and alakazam 🤓

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @predator1702
    @predator1702 Год назад +2

    Amazing.. And very elegant explanations as always. Thank you teacher 🙏.

    • @PreMath
      @PreMath  Год назад +1

      Glad you liked it!
      You are very welcome!
      Thank you! Cheers! 😀

  • @MarieAnne.
    @MarieAnne. Год назад

    I used a very similar approach, but instead of letting AE = y and DE = r−y, I used DE = y (this makes it slightly simpler when squaring binomials, since we are eliminating binomial r−y
    So we have OD = x and DE = y.
    Area of rectangle = BC × CD = r(r+x) (1)
    Using Pythagorean theorem in △ODE, we get:
    OD² + DE² = OE²
    x² + y² = r² (2)
    Using Pythagorean theorem in △CDE, we get:
    CD² + DE² = CE²
    (r+x)² + y² = (12√3)²
    r² + 2rx + x² + y² = 432 → From (2) we replace x² + y² with r²
    r² + 2rx + r² = 432
    2r² + 2rx = 432
    2r (r + x) = 432
    r (r + x) = 216
    But from (1), the left side of expression above [r(r+x)] is area of rectangle
    Area of rectangle = 216

  • @mohanramachandran4550
    @mohanramachandran4550 Год назад +1

    This sum seems to so much difficult
    Your solution is excellent.

    • @PreMath
      @PreMath  Год назад

      So nice of you.
      Thank you! Cheers! 😀

  • @santiagoarosam430
    @santiagoarosam430 Год назад +1

    Llamamos “G” al extremo izquierdo del diámetro horizontal → ∠GEC=90º por estar inscrito en un semicírculo → La longitud de EC sugiere que se trata de la altura de la mitad de un triángulo equilátero (GEC) → GE=12 → GC=2*12=24 → Radio del semicírculo, r=12=OE=GE → ∆OGE es equilátero → ∠GCE=30º y su ángulo central ∠GOE=60º → La hipótesis inicial es correcta → OD=DG=12/2=6 → Área azul ABCD=(2r-6)r=(2*12 -6)12=18*12=216
    Gracias y saludos.

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @ybodoN
    @ybodoN Год назад +2

    Generalization: the area of the blue rectangle is CE² / 2
    Trivia: the area of this blue rectangle is 3³ + 4³ + 5³ = 6³

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @amit_ganjam
    @amit_ganjam Год назад

    Shortcut Method:
    Name the diametre as CP
    Join EP
    ∆ CEP~∆CED
    CP/CE=CE/CD
    CP.CD=CE.CE
    2r(r+x)=(12√3)(12√3)
    2A=12×12×3
    A=12×12×3/2=216 (Answer)

  • @peterkonyha3538
    @peterkonyha3538 Год назад +2

    A = DC x OC
    12v3/DC=OC/6v3
    DC x OC = 3 x 72 = 216

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @quigonkenny
    @quigonkenny 8 месяцев назад

    Let G be the unmarked end of the diameter of semicircle O. Draw EG. As G and C are ends of a diameter and E is a point on the circumference, ∠GEC = 90°. As ∠CDE = 90° as well and ∠DCE is common, ∆EDC and ∆GEC are similar triangles. Let OD = x.
    CD/EC = EC/CG
    (r+x)/12√3 = 12√3/2r
    2r(r+x) = 144(3) = 432
    r(r+x) = 216
    As ABCD is a rectangle and OF, as a radius intersecting a tangent, is perpendicular to AB, the height of ABCD is DA = BC = OF = r, and the width of ABCD is OC+OD = AB = r+x.
    So the area of ABCD is r(r+x) = 216 units.

  • @albertoambram8025
    @albertoambram8025 Год назад +1

    Congratulations for your videos. But this one I'd solve using another way. The rectangle width (w) is equal to the radius (r). The rectangle length (l) is a cathetus from CDE triangle. So l^2 + (DE)^2 = (CE)^2=432. DE is the geometric mean of l and (2r-l). So (DE)^2 = l(2r-l). If we use the first equation, we have l^2 + l(2r-l) = 432, so l^2 + 2lr - l^2 = 432. So, 2lr=432. But r=w, so wl = 216. And that's the answer.

    • @PreMath
      @PreMath  Год назад

      Thanks for sharing! Cheers! 😀

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm Год назад +1

    Интересно, что к этому времени только три пользователя догадались, что задачу можно решить простым и быстрым способом, основанном на том, что результат не зависит от положения точки E на стороне AD (угол DCE может изменятся от 0 до 45°, соотношение сторон ABCD - от 1:1 до 2:1).
    Все они рассмотрели один крайний случай: E совпадает с A (угол DCE=45°, ABCD - квадрат).
    Мне остаётся только рассмотреть другой крайний случай: E совпадает с D (угол DCE=0, ABCD - прямоугольник 2:1).
    [ABCD]=12sqrt3×6sqrt3=216
    Что и требовалось доказать!

  • @batavuskoga
    @batavuskoga Год назад +1

    Amazing. You don't need to calculate the radius of the semi-circle

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @y2jensonjt
    @y2jensonjt Год назад +1

    Let the point where Diameter CD ends be called P. Let length and breadth of rectangle be l and r respectively.
    Now ED is perpendicular to CP
    and Triangle PEC is right angled at P. (Angle inside semicircle)
    Hence DE^2 = PD * DC (Property of similar triangles)
    => EC^2 - DC^2 = PD * DC
    => 432-l^2 = l* (2r-l)
    Hence rl = 216. (after canceling out l^2)

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @XfeeXg
    @XfeeXg 7 месяцев назад

    Another way:
    Set the point G to have OG symmetric OC. CG is the diameter of the circle.
    If DG =x , we have ED*2=DG×DC=x(2r_x)
    ED*2+DC*2=EC*2=(12×3^2)*2
    x(2r_x)+(2r_x)*2=144×3
    2rx_x*2+4r*2_4rx+x*2=432
    4r*2_2rx=432
    2r*2_rx =216
    r(2r_x) =216
    AD×CD=216
    Blue area=216

  • @sauldetarse2339
    @sauldetarse2339 Год назад +1

    nice

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @abdallahgamal6250
    @abdallahgamal6250 Год назад +1

    Fantastic ❤❤
    Keep going ❤
    If x+1/x=5
    Then 2/(12x-7)=?

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @honestadministrator
    @honestadministrator Год назад

    [ rectangle ABCD]
    = BC x CD = CO x CD = CF x CD /2
    Herein F is other end of diameter joining C and O.
    = CE^2 , ∆CEF is right angular, & CD perpendicular to hypotenuse CF
    Hereby [ rectangle ABCD] = CE^2/2

  • @chmjnationalsuperarmygener8564
    @chmjnationalsuperarmygener8564 Год назад +1

    216m hk bus

  • @NormanHarris-sb4mf
    @NormanHarris-sb4mf Год назад +1

    ThanksGoogle

  • @rishudubey1533
    @rishudubey1533 Год назад +2

    😊😊😊

    • @PreMath
      @PreMath  Год назад

      So nice of you.
      Thank you! Cheers! 😀

  • @ΑθανάσιοςΖαντήρης

    με ομοιοτητες τριγωνων:EC/2r=DC/EC,αρα 2xrxDC=ECXEC,αρα 2xrxDC=144x3=432,αρα 2XA=432,αρα Α=216

  • @mesuthocam843
    @mesuthocam843 Год назад

    👏

  • @marioalb9726
    @marioalb9726 Год назад +2

    c = 12 √3 = 20,785 cm
    Similarly of triangles:
    (c/2) / R = (R+x) / c
    (R+x). R = (c/2). c = Area
    (R+x). R = c² / 2
    (R+x). R = 20,785² / 2
    Area = 216 cm² ( Solved √ )
    The area of this rectangle with base R+x and height R
    is equal to:
    The area of a square with diagonal 12√3 !!!!!!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад +2

    A=72*3

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀

  • @DB-lg5sq
    @DB-lg5sq Год назад

    يمكن استعمال cosa و cos2a نجد s=216

  • @vcvartak7111
    @vcvartak7111 Год назад +1

    We don't get other dimensions of this figure

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @sebastianoardita8936
    @sebastianoardita8936 Год назад +1

    Ho ottenuto lo stesso risultato, molto più velocemente, con le proporzioni tra il rettangolo DCE e EC/2 OC . DC x OC = 6√3 x 12√3 = 216

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @JSSTyger
    @JSSTyger Год назад +1

    216

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀