What a big twist!

Поделиться
HTML-код
  • Опубликовано: 29 ноя 2024

Комментарии •

  • @goodplacetostop2973
    @goodplacetostop2973 3 года назад +111

    1:04 Frontflip
    4:34 Good Place To Stop

    • @aahaanchawla5393
      @aahaanchawla5393 3 года назад +8

      hol up the vid was released a few minutes ago

    • @heliocentric1756
      @heliocentric1756 3 года назад +4

      You've chosen a good time to comment.. Basically 2 days before publishing the video.

    • @goodplacetostop2973
      @goodplacetostop2973 3 года назад +6

      @@heliocentric1756 Michael already posted the videos for the next few weeks (he’s building a new studio so obviously he won’t be available to record videos) so I went ahead and post related homeworks under unlisted videos.

  • @aperson1234-t8x
    @aperson1234-t8x 3 года назад +106

    Me: this looks like something I can do!
    Penn: does a frontflip
    Me: ...

  • @ranpodeltapsi
    @ranpodeltapsi 3 года назад +79

    Dude that introductory backflip was dope!

    • @shokan7178
      @shokan7178 3 года назад +18

      It was a frontflip tho :)

    • @jonathanho618
      @jonathanho618 3 года назад +2

      length 'a' was incorrectly labelled 'b' though!

    • @Nah_Bohdi
      @Nah_Bohdi 3 года назад

      >he

    • @Dec38105
      @Dec38105 3 года назад +4

      @@shokan7178 he meant (1/backflip)^-1

  • @user-cv1jb9xv2p
    @user-cv1jb9xv2p 3 года назад +7

    0:54 I started working on the problem. 1:05 I started working on doing a front-flip. Nicely done. 👍🏼👍🏼👏🏼👏🏼

  • @bprpfast
    @bprpfast 3 года назад +2

    A front flip?!!!!!

  • @manucitomx
    @manucitomx 3 года назад +14

    And, when you thought nothing beats the backflip in comes 1:04.
    Thank you, professor.

  • @tahasami3409
    @tahasami3409 3 года назад +1

    Thank for michael penn

  • @goodplacetostart9099
    @goodplacetostart9099 3 года назад +14

    Good Place To Start at 1:04 this time

  • @jamirimaj6880
    @jamirimaj6880 3 года назад +16

    the twist is the backflip, damn
    P.S. if a and b are equal, then the two terms cancel out and just leaving the area of the triangle, thus the shaded area of the crescent will be EQUAL to the area of the triangle beneath it. Awesome.

    • @57thorns
      @57thorns 3 года назад

      And that is the difference between a quarter circle and a half circle (with different radii, but still).

    • @michaelf.7050
      @michaelf.7050 3 года назад +1

      @@57thorns radii?

    • @JohnSmith-qq7yw
      @JohnSmith-qq7yw 3 года назад +5

      That's actually a front flip, not a backflip.

    • @BigDBrian
      @BigDBrian 3 года назад

      and you can see it in the answer too, because if a and b are equal then the terms cancel out.

  • @MrRyanroberson1
    @MrRyanroberson1 3 года назад +1

    unexpectedly easy for what i thought would just be outright absurd

  • @GastevAleksei
    @GastevAleksei 3 года назад +5

    This was a quite easy problem for a Michael Penn video.

  • @Hani-ic3lh
    @Hani-ic3lh 3 года назад +16

    This was surprisingly short!

  • @mushfikaikfat
    @mushfikaikfat 3 года назад +2

    Explanation was elegant and perfect.
    Made perfect sense. Nicely done Sir! Thanks for posting the video 😊😊

  • @djmintyfreshful
    @djmintyfreshful 3 года назад +1

    I’ve only seen two videos and I already love this channel

  • @thanosxypolytos4093
    @thanosxypolytos4093 3 года назад +2

    Michael you make it so easy to understand thanks for sharing the calculations are so easy to understand as well.

  • @shivansh668
    @shivansh668 3 года назад +6

    Great Personality Professor 👍

  • @davidchung1697
    @davidchung1697 3 года назад +1

    Love the figures on the chalkboard.

  • @PATRICKZWIETERING
    @PATRICKZWIETERING 3 года назад

    I found the case where a

  • @BleachWizz
    @BleachWizz 3 года назад +8

    Just a tip. You should be able to position your legs straight before you fall, honestly you're jumping too low. Be careful xP

  • @AndreasHontzia
    @AndreasHontzia 3 года назад +1

    What if a is smaller than b? Some portion of the quarter circle will lay outside the semi circle. How should that be counted? Or what would be the green shaded area?

    • @TJStellmach
      @TJStellmach 3 года назад +1

      "How should that be counted" seems like a definitional problem. What area are you even looking for at that point?

    • @AndreasHontzia
      @AndreasHontzia 3 года назад

      @@TJStellmach You could try to match the solution from the video to the problem. But the easiest would be to say that a ≥ b.

  • @andcivitarese
    @andcivitarese 3 года назад

    very nice slow motion demonstration of conservation of angular momentum: the more he curls up the faster he rotates.

  • @demetriuspsf
    @demetriuspsf 3 года назад +1

    Wow that was a very low front flip. Nice!

  • @haibai1766
    @haibai1766 3 года назад +3

    I think you should mention that a ≥ b, because otherwise the problem gets a bit more complicated

    • @PATRICKZWIETERING
      @PATRICKZWIETERING 3 года назад

      My answer in that case is (1/2)ab - (1/4)(b^2-a^2)arcsin(2ab/(a^2+b^2))

  • @aviralsood8141
    @aviralsood8141 3 года назад +3

    A frontflip! This is amazing!

  • @goodplacetostop2973
    @goodplacetostop2973 3 года назад +8

    HOMEWORK : The square ABCD has side length 2√2. A circle with centre A and radius 1 is drawn. A second circle with centre C is drawn so that it just touches the first circle at point P on AC. Determine the total area of the regions inside the square but outside the two circles.
    SOURCE : Mathematical Mayhem from Crux Mathematicorum Vol. 37, No. 6

    • @athelstanrex
      @athelstanrex 3 года назад +2

      Michael.

    • @goodplacetostop2973
      @goodplacetostop2973 3 года назад +2

      @@athelstanrex Penn.

    • @claudio9991
      @claudio9991 3 года назад +2

      8-5pi/2

    • @goodplacetostart9099
      @goodplacetostart9099 3 года назад +2

      Ans 8-5π/2

    • @goodplacetostop2973
      @goodplacetostop2973 3 года назад +5

      SOLUTION
      *8 − 2√2 − 5π/2 +9arccos((2√2)/3)*
      From the Pythagorean Theorem we get AC = √((2√2)² + (2√2)²) = √(8 + 8) = √16 = 4. Since CP is a radius of the larger circle, and AP = 1 we get CP = CA − PA= 4−1 = 3, therefore the radius of the large circle is 3.
      Now let's introduce more points :
      - Point E is the intersection of the circle with centre C and segment AB
      - Point F is the intersection of the circle with centre C and segment AD
      - Point G is on the circle with centre C such that the segment GDC is a radius of that circle
      - Point H is on the circle with centre C such that the segment HBC is a radius of that circle
      - Point I is the intersection of the circle with centre A and segment AB
      - Point J is the intersection of the circle with centre A and segment AD
      We're looking for the areas of the figures JPF and IPE.
      Using [A] to represent the area of figure A we get,
      [GDF] = [FCG] − [FCD] = α/2π · π(3)² - (√(3² - (2√2)²) · 2√2)/2 = 9α/2 - √2 where α = ∠FCG = arccos((2√2)/3).
      Next, we have [PCDF] = [PCG] − [GDF] = 9π/8 − 9α/2 + √2.
      Thus [JPF] = [ACD] − [APJ] − [PCDF] = 4 − π/8 − (9π/8 − 9α/2 + √2) = 4 − √2 − 5π/4 +9α/2.
      By symmetry [IPE] = [JPF] thus the area of the regions inside the square but not inside a circle is 2[JPE], or 8 − 2√2 − 5π/2 +9α = 8 − 2√2 − 5π/2 +9arccos((2√2)/3) ≈ 0.38 units.

  • @NavyBlueMan
    @NavyBlueMan 3 года назад +1

    Not a super difficult one but still an interesting puzzle - suppose you have a square of side length 1. Inside the square is a circle of the maximum possible radius that can fit in the square, which is shaded in. But a square has been cut out of the circle, such that it kisses the circle at 4 points, which isn't shaded in. But a circle is inside this smaller square, shaded in, with a square cut out of it, and a circle in this square, and so on to infinity. The question is, what is the total shaded area?

  • @HecticHector
    @HecticHector 3 года назад

    This is one of the few videos of yours that I could easily do on my own

  • @trueriver1950
    @trueriver1950 3 года назад

    Depending on what you want the result for, you can then put the last two terms together and factor them using difference if two squares. That might, or might not, be a better place to stop

    • @peglor
      @peglor 3 года назад

      A better place to stop? What is this heresy? :-P

  • @DrWeselcouch
    @DrWeselcouch 3 года назад

    Nice video Dr. Penn! Very impressive flip!!!

  • @pedropicapiedra4851
    @pedropicapiedra4851 3 года назад

    1:02 linear isometry

  • @呂永志
    @呂永志 3 года назад

    One thing may be proved first: arc AC and arc PC don't crossover. If a≤b, what will happen?

    • @PATRICKZWIETERING
      @PATRICKZWIETERING 3 года назад

      My answer in that case is (1/2)ab - (1/4)(b^2-a^2)arcsin(2ab/(a^2+b^2))

  • @rajdeeplahiri8842
    @rajdeeplahiri8842 3 года назад

    Please bring in some more problems based on combinatorics, also if you could take up some calculus problems from the jee advanced exam.

  • @biohoo22
    @biohoo22 3 года назад

    The front-flip flex is why I will never be a stellar mathematician.

  • @JSSTyger
    @JSSTyger 3 года назад

    (1/8)(4ab+πa²-πb²)

  • @ramtindorostkar765
    @ramtindorostkar765 3 года назад +3

    math with parcore!

  • @alainbarnier1995
    @alainbarnier1995 3 года назад

    Michael Penn I like this small problem... and the big jump ;-)

  • @wschmrdr
    @wschmrdr 3 года назад

    3:35 Last I checked, pie are round.

  • @rishijai
    @rishijai 3 года назад

    The front flip is at 1:02

  • @bibeksubedii0001
    @bibeksubedii0001 3 года назад +1

    Easiest one 1⃣

  • @jagmarz
    @jagmarz 3 года назад +1

    Hmm. (ab/2) + pi(a^2+b^2)/8 - pi*b^2/4. Slightly simplify to (ab/2) + pi(a^2-b^2)/8.

  • @hmmmm6174
    @hmmmm6174 3 года назад

    Easier than what it looks ngl, great stuff!

  • @liab-qc5sk
    @liab-qc5sk 3 года назад +4

    Homework for timetravlers again :prove or disprove that pi+e is transdental

  • @rijubhatt8366
    @rijubhatt8366 3 года назад

    Dude, did you really Somersault standing? Wow!

  • @schmetterlingsjaeger
    @schmetterlingsjaeger 3 года назад +1

    Where was the big twist? At 1:03 ?

    • @TJStellmach
      @TJStellmach 3 года назад

      Couldn't the entire shaded figure be described as a kind of big twist?

  • @kujmous
    @kujmous 3 года назад

    Can every individual area be determined?

    • @kujmous
      @kujmous 3 года назад

      I can't find a way myself.

  • @profesorjan7614
    @profesorjan7614 3 года назад

    My dream is to have a blackboard as big as Michael's

  • @Nobody-tu5wt
    @Nobody-tu5wt 3 года назад

    Half circle+right triangle-quarter circle=our answer

  • @betelguese18
    @betelguese18 3 года назад

    Why you dont make a book about this

  • @aryakaranjkar939
    @aryakaranjkar939 3 года назад

    I love the chalk and the flip 😂😁

  • @yahav897
    @yahav897 3 года назад

    Would you like to make a video on the brachistochrone problem? I think it'd be neat :)

  • @nasim09021975
    @nasim09021975 3 года назад

    Hmm, how about finding the area of that small patch on the upper left side of the red right-angled triangle? lol

    • @astrolad293
      @astrolad293 3 года назад

      It's not conceptually hard, just tedious, and probably very messy. Call the intersection of the quarter circle and line AC Z. Calculate the coordinates of Z. From those you can compute the area of the triangle ZBC and the circular segment PBZ (get the angle PBZ from the dot product of vectors BP and BZ). The area of the patch is then the area of triangle ABC minus the the areas calculated. There's another geometric solution using the area of the circular cap to the right of AC, the area of triangle ABC and the quarter circle. Using calculus you can calculate the area under the circular arc PZ and the associated smaller triangle. Take your pick. I think the first one is the easiest.

  • @MYSBRZ
    @MYSBRZ 3 года назад

    Thank you Michael, geometry is good, Tnx😍❤

  • @DoDO-zr5sk
    @DoDO-zr5sk 3 года назад

    why the secound circle calculation becomes plz give reason
    🙏

  • @ramakrishnasen4386
    @ramakrishnasen4386 3 года назад

    Well well well

  • @rishijai
    @rishijai 3 года назад

    I thought this problem required some heavy Integral calculus, I was fooled.

  • @wikipediaboyful
    @wikipediaboyful 3 года назад

    Motion to change QED for "And that's a good place to stop".

  • @jackhandma1011
    @jackhandma1011 3 года назад

    Michael Penn is gonna be the next Ronald Graham with that acrobatics.

  • @StephanvanIngen
    @StephanvanIngen 3 года назад

    Your vids are just enjoyable to watch, thanks:)

  • @ali_aldur
    @ali_aldur 3 года назад

    Wow!

  • @noeticresearch
    @noeticresearch 3 года назад

    A frontal somersault in slow motion with jazzy music playing in the background?? Is there anything you can't do Michael?? :-)

  • @That_One_Guy...
    @That_One_Guy... 3 года назад

    Oh yeah nice Monke Flip lol

  • @MWPdx
    @MWPdx 3 года назад

    Looks like about 5. 5 area.

  • @rorydaulton6858
    @rorydaulton6858 3 года назад +1

    Why did you go against the naming convention for the sides of a right triangle? The usual convention is that vertex C is at the right angle, side c is the hypotenuse, side a is opposite vertex A and side b is opposite vertex B. Following that convention, your ending formula be correct if you replaced your labels A, B, and C with the labels B, C, and A respectively. Or am I missing something?

    • @trueriver1950
      @trueriver1950 3 года назад

      I have noticed before that Michael doesn't use that convention. But that's all it is, a convention: nobody says you have to follow it

  • @EthnHDmlle
    @EthnHDmlle 3 года назад

    I did it the unnecessary way, with trigonometric functions. Over complicating it as usual.

  • @r75shell
    @r75shell 3 года назад +1

    where is a big twist?

  • @CM63_France
    @CM63_France 3 года назад

    Hi,
    For fun:
    1 "and so on and so forth".

  • @pwmiles56
    @pwmiles56 3 года назад

    Hi Michael. Did you know, a 3D body rotating under inertia describes a rotation about the axis of angular momentum which is a function of the time difference only?

  • @zhusan2dui
    @zhusan2dui 3 года назад

    I will use integration 😀

  • @MathElite
    @MathElite 3 года назад

    Awesome video

  • @denimator5651
    @denimator5651 3 года назад

    normal people: 8 him: o
    o

  • @KarlHsia
    @KarlHsia 3 года назад

    这个问题就有点水了,但是这个前空翻。。。我靠

  • @raider8709
    @raider8709 3 года назад

    Penn Flip

  • @jaikiraj2075
    @jaikiraj2075 3 года назад +1

    Class 10 th mathematics in cbse

  • @vibhanarayan9668
    @vibhanarayan9668 3 года назад

    The way u did is bit lengthy , it would have been simpler if u assign diff parts diff variables then add and subtract

  • @morancium
    @morancium 3 года назад

    EZ

  • @dimitritome5118
    @dimitritome5118 3 года назад

    Man you're such a hottie. You should open an onlyfans

  • @JohnSmith-qq7yw
    @JohnSmith-qq7yw 3 года назад

    By far, one of the most annoying things about youtube videos is the audio mixing. There needs to be a standard for youtube audio levels. The vocals audio levels are very low in this video, then there is blasting music that comes in at some point (flip performance). It's so annoying. RUclipsrs, please put a little more effort into making sure your audio levels are consistent across the entire video. Otherwise it makes it so that the watcher has to constantly be adjusting the volume up and down throughout the video. This is so irritating!