Derangement and Recursion || Combinatorics || Math Olympiad || ISI Entrance

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 11

  • @mukulgupta4008
    @mukulgupta4008 4 года назад +3

    Suppose sequence is for n>=1, Recursion forumla : a_n = a_{n-1} + n for n >=2 where a_1=1
    and a_n = {n(n+1)}/2
    Answer to the Question in Video

  • @vanamshobharani5003
    @vanamshobharani5003 3 года назад +1

    For triangular numbers we substitute the value of n and formula is [n(n+1)/2]

  • @RameshKnowledgeIndex
    @RameshKnowledgeIndex 4 года назад +3

    In the second case 2 is not suppose to be on slot 1 so let us assume that slot 1 belongs to 2 [as slot 2 is fixed for 1]. Now you have n-1 numbers from 2 to n and n-1 slot 1,3,4......n. Number of ways to dearrange them is Dn-1.
    Thus the total number of derangement possible when position of 1 is fixed on slot 2 is Dn-1 + Dn-2.
    We get the same result n-1 times if instead of slot 2 we fix 1 at slot3,4,5,.....n.
    Therefore the total number of derangement possible is (n-1)(Dn-1 + Dn-2).
    I felt to good after formulating such a rock solid argument

  • @yashvardhan6521
    @yashvardhan6521 3 года назад

    A question of logic similar to that here of derangement came in iit jee 2014

  • @nextgodlevel
    @nextgodlevel 3 года назад +1

    sir next video link?

  • @RameshKnowledgeIndex
    @RameshKnowledgeIndex 4 года назад +1

    Thanks lot sir

    • @Cheenta
      @Cheenta  4 года назад +1

      Thank you for watching