Bisection Method (Theory, Examples & Codes) | Numerical Methods

Поделиться
HTML-код
  • Опубликовано: 17 янв 2025

Комментарии • 4

  • @darasimidada2194
    @darasimidada2194 Год назад +1

    thank you very much for this

  • @David-pw3sp
    @David-pw3sp Год назад +2

    Dude, such great comment should not be free, you are amazing, real help for my engineering class of numeric methods

  • @EdwardNorminton
    @EdwardNorminton Год назад

    The use of 'error = abs(b - a)' means you are dealing with the number of decimal places.
    This is OK if the root is in [1,10] but give bad results if the root is near 0 e.g. x - 0.0000000001.
    The sequence of intervals would be
    1 [0.000000, 1.000000]
    2 [0.000000, 0.500000]
    3 [0.000000, 0.250000]
    4 [0.000000, 0.125000]
    5 [0.000000, 0.062500]
    ...
    20 [0.000000, 0.000002]
    so |b - a| = 0.000002 <
    In this case, take the midpoint of this interval (0.000002) and we find
    |0.000002 - 0.0000000001| < 5*10**(-6)
    so that 0.000002 is an approximation to 0.0000000001 that is accurate to 5 decimal places but is a useless result.
    Absolute error gives decimal place - relative error '|b - a|

  • @xiangjunyangnyu
    @xiangjunyangnyu Год назад

    Just draw a vertical line around the root? That's too aggressive...