Interesting Olympiad Math problem | Can you solve ?

Поделиться
HTML-код
  • Опубликовано: 5 фев 2025

Комментарии • 2

  • @ManojkantSamal
    @ManojkantSamal 9 дней назад

    Ans ::*3i/2...... May be
    ^=read as to the power
    *=read as square root
    Let (1/x)=y
    So, xy=1
    As per question
    X+y=1.....eqn1
    So,
    X-y=*{(x+y)^2-4xy}
    =*{1-4}=*(-3)=*3i..... Eqn2
    Eqn1 +eqn2
    X+y+x-y=1+*3i
    So,
    2x=1+*3i
    X=(1+*3i)/2
    So,
    Y=(1/x)=2/(1+*3i)
    ={2(1-*3i)}/{(1+*3i)(1-*3i)}
    ={2(1-*3i)}/4
    =(1-*3i)/2
    Now, x^^2-y^2=
    {(1+*3i)^2-(1+*3i)^2}/4
    =(4×1×*3i)/4
    =*3i.....May be
    Another method
    X^2-y^2=eqn1×eqn2
    =1×(*3i)=*3i
    So,
    X^2-(1/x^2)=*3i