A Cubic Equation with Radicals |

Поделиться
HTML-код
  • Опубликовано: 4 ноя 2024

Комментарии • 24

  • @xsimox13
    @xsimox13 Год назад +3

    Directly we guess that 2sqrt(2) is a solution right away then we just have to factorize

  • @seanfraser3125
    @seanfraser3125 Год назад +4

    Through a bit of guess and test, I found x=2sqrt(2) to be a solution. By polynomial long division we can factor the polynomial:
    (x-2sqrt(2))(x^2+2sqrt(2)x+5) = 0
    To find the other two solutions you can use the quadratic formula:
    x = (-2sqrt(2) +- sqrt(8-20))/2
    = - sqrt(2) +- isqrt(3)

  • @pidgeotroll
    @pidgeotroll Год назад +1

    By intutition: x^3 - 3x = x(x^2-3) = 10sqrt2. My first guess is that if x is Asqrt2 for some integer A, then A*(2A^2-3) = 10. I can only factor 10 as 2*5 so I guess that A is 2 (since 2*5^2-3 is way too large and therefore A can't be 5). Checking 2sqrt2 for x completes the exercise.

  • @Wasifazim2009
    @Wasifazim2009 Год назад

    Wow one of the best sum❤

  • @Qermaq
    @Qermaq Год назад

    Saw right away that x = 2 yields 2 and x = 3 yields 18 so 2 < x < 3 for at least one value of x. We are looking at 10root2 or about 14. Obvious guess is obvious. Factor it out and quadratic it up, x also equals (-root2) +/- root3*i.

  • @XJWill1
    @XJWill1 Год назад +2

    It is impossible to find a formula to denest every nested radical involving a cube root. The best that can be achieved is to find a technique that is likely to work on radicals that are able to be denested. Here is a simple one that succeeds in many cases which are possible to denest:
    (a + d * sqrt(s))^(1/3) = (1/2) * (3*d*x0 - a)^(1/3) * (1 + sqrt(s)/x0)
    where x0 is a root of the cubic polynomial
    d*x^3 - 3*a*x^2 + 3*d*s*x - a*s = 0
    Obviously, this only denests the radical if you can find a rational root to the cubic polynomial. And that depends on whether any of the candidates from the rational root theorem actually satisfy the equation. So denesting the radical has been transformed to finding a rational root for a cubic polynomial.
    The cube root mentioned in the video fails since there is no rational root.

    • @SyberMath
      @SyberMath  Год назад

      Good point. I attempted it and got stuck

  • @КириллЛещенко-т8д

    корень 2*sqrt(2) подбирается очень быстро. после этого остаётся квадратное уравнение.

  • @venelinarnaudov7416
    @venelinarnaudov7416 Год назад

    Yeah, it was clear that x would have a sqrt(2) component. But why it was not considered that it could have a real component as well? So x=a*sqrt(2) +b. We could miss other solutions.
    In our case, we have just one solution, as shown by the graph, so a=2 and b=0.
    So, maybe we need to start with the graph and check how many solutions there could be.
    Or try to find the other solutions by dividing the polynomial x^3-3x-10*sqrt(2) by x-2*sqrt(2) => (x-2sqrt(2))(x^2 +bx +c)=x^3-3x-10sqrt(2) => b=2sqrt(2), c=5. So, we are looking for the solutions of x^2+2sqrt(2)*x+5=0 and see that there are no real roots.

    • @SyberMath
      @SyberMath  Год назад

      Good thinking! knowledge illusion

  • @barberickarc3460
    @barberickarc3460 Год назад +1

    Very fun and easy problem! I'd love it if you could do more similar to this one.
    I solved this by using rational root theorem, but adding a root(2) to the end of the possible rational roots (instead of checking ±1 ±2 ±5 ±10 i checked ±root(2) ±2root(2)....)
    I ended up with x = 2root(2) as a solution and divided by it, getting a quadratic.
    Solving by quadratic formula, i got 1 real solution and 2 complex solutions.
    X = 2root(2)
    X = -root(2) ± root(3)i

  • @Ajaysingh_25
    @Ajaysingh_25 Год назад +2

    u r helping me alot in my jee prep sir please upload some binomial theorem problems

  • @yoav613
    @yoav613 Год назад

    Yes.

  • @s1ng23m4n
    @s1ng23m4n Год назад

    Guess and check x1 = 2√2

  • @DonRedmond-jk6hj
    @DonRedmond-jk6hj 7 месяцев назад

    For what it's worth the method you used to find a and b goes back to the Mesopotamians.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    😂Cubica con D=7>0,1 soluzione reale e 2 complesse... X=sqrt3(5rad2-7)+sqrt3(5rad2+7)

  • @abdellahmouaouine
    @abdellahmouaouine Год назад

    روعة

  • @-basicmaths862
    @-basicmaths862 Год назад

    x=2√2

  • @ИгорьКулик-л2р
    @ИгорьКулик-л2р Год назад

    Поищем корень среди делителей свободного члена, есть такой -2*2#1/2 разделим многочлен на х-2*2#1/2 и получим квадратное уравнение. Все.

    • @s1ng23m4n
      @s1ng23m4n Год назад

      Это работает только в случае уравнения с целыми коэффициентами. И вообще, сам подумай, у тебя есть иррациональное число и ты перебираешь его делители... Это как вообще, какие делители могут быть у иррационального числа?) Но в данном случае это просто совпадение.

  • @rakenzarnsworld2
    @rakenzarnsworld2 Год назад

    Answer: 2.828