300 - Picking the best model and corresponding hyperparameters using Gridsearch

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 9

  • @rs9130
    @rs9130 Год назад +2

    Vision transformers: most awaited video of the century by Sreeni

  • @nahid-rl5iu
    @nahid-rl5iu 5 месяцев назад

    Hello Sreeni, thanks for the informative tutorials. 12:00 You have defined 'params' that has hyperparameters for all the models. However, for GridsearchCV the 'pipeline' takes only the 'RandomforestClassifier', aren't you supposed to use the 'param1' that has hyperparameters defined for RandomforestClassifier. Correct me if I am wrong. Thanks!!

  • @akhil186
    @akhil186 8 месяцев назад +1

    Hello Sreeni, thanks for the informative tutorials. You have defined 'params' that has hyperparameters for all the models. However, for GridsearchCV the 'pipeline' takes only the 'RandomforestClassifier', aren't you supposed to use the 'param1' that has hyperparameters defined for RandomforestClassifier. Correct me if I am wrong. Thanks!!

    • @nahid-rl5iu
      @nahid-rl5iu 5 месяцев назад

      i am also thinking so

  • @hakankosebas2085
    @hakankosebas2085 Год назад

    will be there model tutorial like mask rcnn but faster models and for road segmentation in real time

  • @josephmonyoro5129
    @josephmonyoro5129 Год назад

    Amazing video thanks alot, now I can cross validation on models and parameters tuning.😁😁😁

  • @HariramG-v7k
    @HariramG-v7k Год назад

    the training of the brat20 dataset in my system is very slow and it showing it exceeds the cpu memory of 10%,can you please give me a solution sir

  • @caiyu538
    @caiyu538 Год назад

    Great