Can you calculate the length X? | (Two Methods) |

Поделиться
HTML-код
  • Опубликовано: 10 ноя 2024

Комментарии • 85

  • @NahidMiah-e6m
    @NahidMiah-e6m 9 месяцев назад +7

    Oh, I love this kind of puzzle. ❤❤❤ and your videos make me an expert professional mathematician.

    • @PreMath
      @PreMath  9 месяцев назад

      That's awesome!
      Thanks ❤️

  • @phungpham1725
    @phungpham1725 9 месяцев назад +3

    Your solutions are simple and clever! Thank you so much!
    Alternative approaches:
    1/ Drop the height EH to AC. We have EH//=1/2BC so EH= 12; and H is the midpoint of AC.
    Consider the right triangle AED: sq EH=AH.HD----->144=AH.(25-AH)
    ---> Sq AH - 25 AH +144 = 0 ----> AH= 32/2----> AC= 32----> AB= 40 ( 3-4-5 triple)----->AE=20-----> X= 15 units (the triangle ADE is also a 3-4-5 triple).
    2/The quadrilateral BCDE is cyclic so AE.AB=AD.AC----> sq AB/2=25.(25+DC)
    -----> sq AB= 50(25+DC) = sq 24 + sq (25+DC)
    ---->1250 +50DC -= 576+ sq25 + sqDC +50DC
    sq DC= 49---> DC= 7----> AC= 32
    The rest is the same as above.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @prossvay8744
    @prossvay8744 9 месяцев назад +4

    Let AE=BE=a
    In triangle ADE
    AD^2=DE^2+AE^2
    x^2+a^^25^2
    x^2+a^2=625 (1)
    Triangle ADE~ABC
    x/25=24/2a
    ax=300 (2)
    (1) and (2)
    So: x=15 ; x=20 rejected
    X=15 units. ❤❤❤ Thanks teacher.

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      You are very welcome!
      Thanks ❤️

    • @phungpham1725
      @phungpham1725 9 месяцев назад

      Very nice!

  • @jimlocke9320
    @jimlocke9320 9 месяцев назад +1

    Construct a perpendicular to AB upward from B. Extend AC until it meets the perpendicular and label the intersection as point F. Note that ΔADB and ΔAFB are similar by angle - angle (common

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @TheDHemant
    @TheDHemant 9 месяцев назад

    Excellent sum. How can you imagine such questions!

  • @devondevon4366
    @devondevon4366 9 месяцев назад +1

    x = 15
    Let the hypotenuse = 2y
    and the remaining leg = n , then the triangles are similar
    then:
    24 /2y = x/25
    Hence, 24 * 25 = x* 2y
    12 * 25 = xy
    300 = xy
    300/y =x
    Using Pythagorean Theorem and the sides 25, 300, and y
    25^2 - (300/y)^2 = y^2
    625 - 90,000/y^2 = y^2
    625y^2 - 90,000 = y^4 (multiply both sides by y^2)
    let y^2 = n , then
    625 n - 90,000 = n^2
    n^2 - 625 n + 90,000 =0
    (n- 400) ( n- 225) =0
    n=400 and n= 225
    Hence y^2 = 225 and 400
    y = 15 and 20
    hence y= 20 and x = 15
    as this satisfies the triangle sides a 3-4-5 with sides 40, 32, and 24

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      Thanks ❤️

  • @LENAKSOY
    @LENAKSOY 9 месяцев назад +1

    Awesome❤

    • @PreMath
      @PreMath  9 месяцев назад

      Glad to hear that!
      Thanks ❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 9 месяцев назад

    △ACB ~ △AED. AE=√625-x^2. AB=2*√625-x^2. 25/x=(2*√625-x^2)/24. Squaring, solving the biquadrate equation and choosing the appropriate root.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @TheTiberius74
    @TheTiberius74 9 месяцев назад +1

    I used similar approach. But once you have ab/2 you hypotenuse 25^2= 20^2+ x^2 rearrange faktorize if u want to do that in your head. You get 225^0.5 which is 15
    225 =3*3*5*5 take the sqr root
    15 again
    Sqr root of ((3^2)*(5^2))
    The same as sqr (3^2)*sqr (5^2)
    Just in case younger audience does not "see" it.
    Continuous learning is the base of a happy life. Using it is the base of success.

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

    • @TheTiberius74
      @TheTiberius74 9 месяцев назад +1

      Did not know about the triples. I'm 50 years old forgot a lot since school. Love your videos❤️​@@PreMath

    • @TheTiberius74
      @TheTiberius74 9 месяцев назад +1

      All roads lead to Rome is a saying we have.

  • @uwelinzbauer3973
    @uwelinzbauer3973 9 месяцев назад

    Hello!
    I went a different way:
    Using properties of similar triangles, I approached the solution by algebraic method.
    This brought me to the special case of a quartic equation, a bi-quadratic equation.
    Solving this turned out two solutions for x:
    X1=15 and x2=20. But plugging in x2=20 causes point C lying between A and D. That means, the resulting shape then will not be a triangle.
    So x=15 seems to be the only solution making sense.
    Thanks for the interesting video, best greetings!

  • @GaryBricaultLive
    @GaryBricaultLive 9 месяцев назад

    Once you have found the base length of 20, to me it is more obvious to once again to apply Pythagorean theorem to find X than using the proportion approach.
    X ^ 2 = (25 ^ 2) - (20 ^ 2)
    (X ^ 2) ^ .5 = (225 ^ .5)
    X = 15

  • @ybodoN
    @ybodoN 9 месяцев назад

    1st method: draw BD and use the Pythagorean theorem (or Pythagorean triples) three times to find that x = 15.
    2nd method: similar triangles ⇒ x / 24 = 25 / (2√(25² − x²)) leading to a quadratic equation and x = 20 or x = 15.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @comdo777
    @comdo777 9 месяцев назад +1

    asnwer=6cm isit

  • @quigonkenny
    @quigonkenny 9 месяцев назад

    Draw BD. By observation, ∆BDA is an isosceles triangle, so BD = DA = 25.
    Triangle ∆BCD:
    a² + b² = c²
    CD² = 25² - 24² = 625 - 576 = 49
    CD = √49 = 7
    Triangle ∆BCA:
    a² + b² = c²
    AB² = 24² + (25+7)² = 576 + 32²
    AB² = 576 + 1024 = 1600
    AB = √1600 = 40
    Triangle ∆AED
    a² + b² = c²
    x² = 25² - (40/2)² = 625 - 400
    x = √225 = 15

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @MaKhatami
    @MaKhatami Месяц назад

    Given
    (25 + b)² + 24² = 2a²
    a² + x² = 25²
    b² + 24² = c²
    x² + a² = c²
    Find(a,b,c,x)
    a = 20 , b = 7 , c = 25 , x = 15

  • @jamestalbott4499
    @jamestalbott4499 9 месяцев назад +1

    Thank you!

    • @PreMath
      @PreMath  9 месяцев назад

      You are very welcome!
      Thanks ❤️

  • @unknownidentity2846
    @unknownidentity2846 9 месяцев назад +1

    Let's find x:
    .
    ..
    ...
    ....
    .....
    Obviously the triangles ADE and BDE are congruent. Therefore we know that AD=BD. Since the triangle BCD is a right triangle, we can apply the Pythagorean theorem:
    BD² = BC² + CD²
    AD² = BC² + CD²
    25² = 24² + CD²
    625 = 576 + CD²
    49 = CD²
    ⇒ CD = 7
    Now we can apply the Pythagorean theorem again for the triangle ABC:
    AB² = AC² + BC²
    AB² = (AD + CD)² + BC²
    AB² = (25 + 7)² + 24² = 32² + 24² = (4*8)² + (3*8)² = (5*8)²
    ⇒ AB = 5*8 = 40
    Finally we apply the Pythagorean theorem a third time to find x:
    AD² = AE² + DE²
    AD² = (AB/2)² + x²
    25² = (40/2)² + x² = 20² + x²
    (5*5)² = (4*5)² + x²
    (3*5)² = x²
    ⇒ x = 15
    Best regards from Germany

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      Thanks ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 9 месяцев назад +1

    Posto AE=a,le equazioni usate sono a:x=√((2a)^2-24^2):24(triangoli simili)...e a^2=25^2-x^2...x^2=(625-175)/2=225...x=15

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      Thanks ❤️

  • @rssl5500
    @rssl5500 7 месяцев назад

    Draw parallel line from E and use Thales theorem and Pythagoras to get x=15

  • @marcgriselhubert3915
    @marcgriselhubert3915 9 месяцев назад

    Let's use an adapted orthonormal: C(0;0) B(0;24) D(d;0) A(d+25;0) E((d+25)/2;12) VectorAB(d+25;-24) VectorDE(((d+25)/2)-d; 12) or VectorDE(((-d+25)/2;12)
    VectorAB and VectorDE are orthogonal, so their scalar product is 0, so we have: (d+25).((-d+25)/2) + (-24).(12) = 0 or (625 - d^2)/2 - 288 = 0 or d^2 - 625 = -576
    giving that d^2 = 49 and that d = 7.
    Now we have D(7;0) and E(16;12) and Vector DE(9;12), so DE^2 = 9^2 = 12^2 = 81 + 144 = 225, and finally x = DE = sqrt(225) = 15.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @michaelmounts1269
    @michaelmounts1269 9 месяцев назад

    another great video…my biggest weakness on geometric puzzles is my failure to “add” to the diagrams via extensions etc. you have helped me to take a step back and for ways to “restate” the problem via mods. really appreciate you taking the time snd effort to priduce these.

  • @StephenRayWesley
    @StephenRayWesley 9 месяцев назад

    (25)^2=625 (24)^2:=576 (625+576)=1201 (1201°-180°)=√1021 √5^23√^7√1^2 3^√1 23 (x+2x-3)

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @batavuskoga
    @batavuskoga 9 месяцев назад

    I did the same as you till the calculation of AB. Then I used the Pythagorean theorem again to find X.
    At first sight I was thinking "I could not solve this one", but the key to the solution is to find the length of BD.
    Once you know this length, you will find the solution using the Pythagorean theorem multiple times.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @cyruschang1904
    @cyruschang1904 9 месяцев назад

    If the hypotenuse of the big triangle is 2y
    x^2 + y^2 = 25^2
    The small and large triangles are similar
    2y/25 = 24/x => y = 25(12)/x
    x^2 + (25^2)(12^2)/x^2 = 25^2
    let x^2 = a
    a + (25^2)(12^2)/a = 25^2
    a^2 - (25^2)a + (25^2)(12^2) = 0
    a = ((25^2) +/- ✓(25^4) - 4(25^2)(12^2))/2 = ((25^2) +/- 25✓(25^2) - (24^2))/2 = ((25^2) +/- 25(7))/2 = 25(25 +/- 7)/2 = 25(16) or 25(9) = x^2
    x = 5(4) or 5(3) = 20 or 15
    x = 15, y = 20

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

    • @cyruschang1904
      @cyruschang1904 9 месяцев назад

      @@PreMath Thank YOU. I had fun doing it 🙂

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 месяцев назад

    A large right-angled triangle in ratio (3,4,5) composed of three small right-angled triangles, two identical in ratio (3,4,5), one in (24,7,25).🎉🎉🎉

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 9 месяцев назад

    I have been out.
    Let's draw a Line between points B and D. This Line BD = AD = 25. The Triangle [ABD] is an Isosceles Triangle!!
    So,
    DC^2 = DB^2 - BC^2
    DC^2 = 25^2 - 24^2
    DC^2 = 625 - 576
    DC^2 = 49
    DC = 7
    AC = AD + DC = 25 + 7 =32
    Now!
    AB^2 = AC^2 + BC^2
    AB^2 = 32^2 + 24^2
    AB^2 = 1.024 + 576
    AB^2 = 1.600
    AB = 40
    Final Fase:
    Area of Triangle [ABC] = 24 * 32 / 2 = 384
    Area of Triangle [BCD] = 24 * 7 / 2 = 84
    Area of Triangle [ADB] = 384 - 84 = 300
    40x / 2 = 300
    40x = 600
    x = 600 / 40
    x = 15
    Answer:
    The line x = 15 linear units

  • @k.amanda.m
    @k.amanda.m 9 месяцев назад

    Why is your explanation such a surprise to me?😅
    Before you explain it, I tried to solve the problem first. But how do I solve it with the congruence method if one side is unknown?
    And, i give up😂 and play the video.
    Then, at 1:48. I realize to used phytagoras. Boom! 🎉 how could this matter be so easy? ❤

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 месяцев назад +1

    (25+a)/24=x/b, 25+a=24x/b, b^2+x^2=25^2, b^2=25^2-x^2, 4b^2=(25+a)^2+24^2, 4b^2=(24x/b)^2+24^2, 4b^4=24^2x^2+24^2b^2, 4(25^2-x^2)^2=24^2x^2+24^2(25^2-x^2), 4(25^4-2×25^2 x^2+x^4)=24^2x^2+(24×25)^2-24^2x^2, 4×25^4-8×25^2x^2+4x^4=(24×25)^2, 4x^4-8×25^2x^2+25^2(4×25^2-24^2), ......😅😅😅😅😅😅

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

    • @Ninja_fan_345
      @Ninja_fan_345 4 месяца назад

      U waste my time bro 😅😅

  • @AmirgabYT2185
    @AmirgabYT2185 9 месяцев назад +3

    15)

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

  • @reckless_0_0_0
    @reckless_0_0_0 3 месяца назад

    Advance level

  • @alster724
    @alster724 9 месяцев назад

    Basic Pythagorean alone like in method 1 worked

  • @joeschmo622
    @joeschmo622 9 месяцев назад

    I did it the hard way with similar triangles, and had to use a substitution of z=x^2 to get a quadratic for z, then sqrt it.

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 9 месяцев назад +1

    I ran out of ink and paper today. All I had too write on was a basketball with a Sharpie too solve this problem . Too say the least, Euclid's took on a whole new dimension. ...bizarre results! 🙂

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks a lot ❤️

  • @arnavkange1487
    @arnavkange1487 9 месяцев назад

    Most easy sum ...I literally solved it orally

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      Thanks ❤️

  • @kartiksharma-fp4tb
    @kartiksharma-fp4tb 9 месяцев назад

    15

  • @gunvantbhaimistry8411
    @gunvantbhaimistry8411 9 месяцев назад

    There is a mistake at 4:22 minutes, you have a^2 + b^2 = c^2, you put a=24 and b=32, how can 24^2 be more than 32^2 as you show in the next equation.

    • @PreMath
      @PreMath  9 месяцев назад

      My apologies!
      Thanks ❤️

  • @yakupbuyankara5903
    @yakupbuyankara5903 9 месяцев назад

    X=15

  • @JSSTyger
    @JSSTyger 9 месяцев назад

    x = 15. I cheated a bit. I presumed a 3-4-5 right triangle and it ended up working out.

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

    • @Se-La-Vi
      @Se-La-Vi 4 месяца назад

      Основні трикутники у задачі мають формулу 3-4-5👌 - Єгипетський трикутник. І зі сторонами 7-24-25 теж входить в цю купу.

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 месяцев назад

    sqrt(4(25^2-x^2)-24^2)/24=sqrt(25^2-x^2)/x, (1924-4x^2)/24^2=(25^2-x^2)/x^2, 1924x^2-4x^4=24^2×25^2-24^2x^2, x^4-625x^2+12^2×25^2=0, x^2=(625+-175)/2 =400 or 225, x=20 rejected, for 25 is too large, so x=15😅😅😅😅😅😅😅😅😅

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @ThomasBelmonte-om1lw
    @ThomasBelmonte-om1lw 9 месяцев назад

    When I saw the triangle with right angle and a multiple of 5 the others sides couldn t be different from 20 and 15

    • @ybodoN
      @ybodoN 9 месяцев назад

      A (3, 4, 5) triangle is a usual suspect. But we also have BCD which is a (7, 24, 25) Pythagorean triple as well...

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 месяцев назад +1

    Your isosceles triangle's method is too smart, relative to me.😢

    • @PreMath
      @PreMath  9 месяцев назад

      Excellent!
      Thanks ❤️

  • @nenetstree914
    @nenetstree914 8 месяцев назад

    I thought AC is 25 then I got X is (12/25)*(1201^0.5)🤣🤣🤣

  • @tplayz3454
    @tplayz3454 9 месяцев назад

    Too eazy done in 5 min

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

    • @tplayz3454
      @tplayz3454 9 месяцев назад +1

      Thank u soooooooo much u made my day love ur content

  • @abdurrahman2008
    @abdurrahman2008 9 месяцев назад

    this was the easiest in ur channel💔

    • @PreMath
      @PreMath  9 месяцев назад +1

      Thanks ❤️

  • @StephenRayWesley
    @StephenRayWesley 9 месяцев назад

    (25)^2=625 (24)^2:=576 (625+576)=1201 (1201°-180°)=√1021 √5^23√^7√1^2 3^√1 23 (x+2x-3)

    • @PreMath
      @PreMath  9 месяцев назад

      Thanks ❤️