Using Lobachevsky's Integral TWICE on one integral

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 12

  • @doronezri1043
    @doronezri1043 Месяц назад +2

    The first move - rewriting it in the form of Labochevsky is genius 😊

    • @owl3math
      @owl3math  Месяц назад

      That part is key!

  • @slavinojunepri7648
    @slavinojunepri7648 Месяц назад +1

    Excellent 👌

    • @owl3math
      @owl3math  Месяц назад

      Hi Slavino. Thanks! 🙏

  • @ashishraje5712
    @ashishraje5712 Месяц назад +1

    Genius i am bewilderd by yr cerebral

    • @owl3math
      @owl3math  Месяц назад

      thanks Ashish ☺

  • @Samir-zb3xk
    @Samir-zb3xk 15 дней назад +1

    Correct me if I'm wrong but isn't the formula with lower bounds -∞, and -π/2? I think the version you showed works only if f(x) is an even function

    • @owl3math
      @owl3math  14 дней назад

      Hi Samir. Yes, the f(x) must be even for Lobachevsky to work.

    • @Samir-zb3xk
      @Samir-zb3xk 14 дней назад

      @owl3math Thanks for confirming, I tried to prove the formula starting with bounds 0 to ∞ but it only worked once I changed it to -∞ to ∞. Then only after adding the condition f(x) is even, I could get the result shown in the video.
      Btw I have some cool integrals I think you should try (0 to π/2) ∫ ln(1 + 4sin²(x)) dx and (0 to ∞) ∫ cos(x) / (x⁴ + 1) dx

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx Месяц назад +1

    pleaase/ pdf

    • @owl3math
      @owl3math  Месяц назад

      Hello. This one didn't come from an integration bee. Are you looking for a link to something?