Cantilever beam Shear Force and Bending Moment diagram with Triangular load

Поделиться
HTML-код
  • Опубликовано: 11 дек 2024

Комментарии • 13

  • @shanilasale621
    @shanilasale621 23 дня назад

    you saved my life sir

  • @KassayeAbate
    @KassayeAbate Год назад +1

    please compute both varying load and uniform distributed load

  • @nahidulislam1634
    @nahidulislam1634 4 года назад

    You made a great help for me sir .. thankyou for the video

    • @civilengineering94
      @civilengineering94  4 года назад

      Glad it helped

    • @nahidulislam1634
      @nahidulislam1634 4 года назад

      Can u share some video math of beam deflection ,sir? It'll be a bunch of help for me .❤️

  • @amitkushwaha_0
    @amitkushwaha_0 4 года назад

    Thank You so much sir for your given useful knowledge ❣️❣️❣️👍👍😊

  • @sothattheng8624
    @sothattheng8624 4 года назад

    Thanks for sharing! Can you find the deflection?

  • @rekanburhan9486
    @rekanburhan9486 4 года назад

    At 8:28 why you use concave down not up ?

  • @deeehwa
    @deeehwa 3 года назад

    What if the support is on the right side? How do I do with that?

  • @mikokokokoko
    @mikokokokoko 4 года назад

    Mind explaining what is 1 degree 2 degrees and 3 degrees?

    • @benjaminlavigne2272
      @benjaminlavigne2272 3 года назад

      in y(x)=mx+b, if X=0 then y(x)=b and looks like a horizontal line on a graph that can move up or down (b values) along the Y axis but remains horizontal this is 0 degree.
      in (y)x=mx+b, y(x) is a line, that can have a slope; this is 1 degree
      in y(x)=mx^2+b y(x) is a parabole, this is 2 degree
      y(x)=mx^3+b is 3 degree
      y(x)=mx^4 is 4 degree
      can also be in the form of
      y(x)=x^0 [0 degree]
      y(x)=x^1 [1 degree]
      y(x)=x^2 [2 degree]
      y(x)=x^3 [3 degree] and so on.