Hubs & Authorities

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025

Комментарии • 92

  • @deepeshgolani1
    @deepeshgolani1 5 лет назад +7

    Thank you maam! We still miss you from my diploma days

  • @rhysparsons2474
    @rhysparsons2474 4 года назад +6

    This is good up to a point. To calculate the next iteration, it isn't enough just to re-normalise the values. You have to re-calculate the authorities from the previous iteration's hubs; update the hubs from that; then normalise. For k=2, the numbers should look quite different. See en.wikipedia.org/wiki/HITS_algorithm#Pseudocode for pseudocode for doing the same thing.

    • @amur_
      @amur_ 3 года назад

      Yeah, I was wondering the same thing. Looks like what she's done here isn't right.

  • @architlatkar2503
    @architlatkar2503 4 года назад +3

    for each iteration of k, we are simply taking unit vectors so it would naturally come the same in 2 iterations. So how is it useful? In some other cases such as page rank algorithm, i saw that the ranks converge to some values over several iterations, but here its not the case. Could you clear this doubt please?

    • @hamzamaqsood1
      @hamzamaqsood1 3 года назад +1

      Its probably the wrong way.. for k=2, we get updated hub vectors by multiplying Ateanspose with previous Hub vector

  • @nishantaridamankumar9376
    @nishantaridamankumar9376 3 года назад +2

    Program implementing the above algorithm:
    import numpy as np
    NAMING_ARRAY = []
    k = int(input())
    nodes = int(input())
    adjacency = []
    strength_adjacency = nodes*nodes
    for i in range(strength_adjacency):
    if i < nodes:
    NAMING_ARRAY.append(f"N{i+1}")
    adjacency.append(int(input()))
    A = np.array(adjacency)
    A.shape = (nodes, nodes)
    A_T = np.transpose(A.copy())
    u = np.ones((nodes, 1))
    v = np.matmul(A_T, u)
    u = np.matmul(A, v)
    n = 1
    while k >= n:
    print()
    print("ITERATION NO: ", n)
    hub = u.copy().flatten()
    hub_normalizer = 1/sum(np.square(hub))**0.5
    authority = v.copy().flatten()
    authority_normalizer = 1/sum(np.square(authority))**0.5
    print("Node\tHub Scores\tAuthority Scores")
    for i in range(0, nodes):
    print(f"{NAMING_ARRAY[i]}\t{round(hub[i], 3)}\t\t{round(authority[i], 3)}")
    sorted_hubs = sorted(zip(NAMING_ARRAY, hub), key=lambda x : x[1], reverse=True)
    sorted_authorities = sorted(zip(NAMING_ARRAY, authority), key=lambda x : x[1], reverse=True)
    print()
    print("HUB:", end=" ")
    is_a_tie = False
    for node, _ in sorted_hubs:
    if np.count_nonzero(hub == _) > 1:
    is_a_tie = True
    print(node, end=" ")
    if is_a_tie:
    print("{Tie}")
    else:
    print()
    print("AUTHORITY:", end=" ")
    is_a_tie = False
    for node, _ in sorted_authorities:
    if np.count_nonzero(authority == _) > 1:
    is_a_tie = True
    print(node, end=" ")
    if is_a_tie:
    print("{Tie}")
    v = v*authority_normalizer
    u = u*hub_normalizer
    n += 1
    print()
    # 3

  • @whatsaappstatus6452
    @whatsaappstatus6452 Год назад

    You explain every topic very easy and perfect 💯🤝thanks

  • @techinfo6598
    @techinfo6598 7 лет назад +4

    thanx a lot mam., your teaching was so useful....

  • @adarshmahto5645
    @adarshmahto5645 7 лет назад +2

    Hello maam your videos really very helped to us .. thank you for making these videos :) i have little confusion at @4:02 where if in-degree is 4 than outdegree will be 0 but u were mention as 1 . for ( node 4 )

  • @cbh4678
    @cbh4678 4 года назад +1

    Thanks maam.
    I think there are some doubtful figures under K = 2.
    What I mean is that, during calculating authority score under K = 2 , N1 and N2 received different hub socres (respectively 0.445 from N3, 0.623 from N1). However you count both as same figures. This is why I am confused....

  • @leanderpereira5257
    @leanderpereira5257 2 года назад

    What about spider traps

  • @parthgulati4914
    @parthgulati4914 7 лет назад +3

    we are dividing all the ranks by the same value so won't they remain the same, no matter how many iterations it takes?

    • @shivakumar-fq1mc
      @shivakumar-fq1mc 6 лет назад +3

      we have to multiply A Transpose with new hub weights to get new authority vector

  • @TheTerribleDreamer
    @TheTerribleDreamer 6 лет назад +1

    This is a very helpful video, thank you

  • @ganeshvadcar8098
    @ganeshvadcar8098 6 лет назад

    Wow, explanation made so simple and easy to understand

  • @balasahebgadekar425
    @balasahebgadekar425 3 года назад

    Madam,I am not getting what is wigen factor,why it takes and what is its importance.Then why you take damping factor as 0.8, .What are the restrictions on Matrix. Is any special type of matrices or not

  • @doyeldesarkar2276
    @doyeldesarkar2276 2 года назад +1

    Hello mam, if you can upload a video on Latent semantic Indexing it will be great.. Looking forward.

  • @amanchoudhary4547
    @amanchoudhary4547 4 года назад

    Awesome tutorial thanks ma'am

  • @VirenJoshiOfficial
    @VirenJoshiOfficial 5 лет назад

    In hubs and authorities
    In 2nd iteration are we suppose to use normalised value or normal values of h & a ?

  • @zeetennayak1056
    @zeetennayak1056 6 лет назад

    mam your topic is HITS Algorithm for BIg data analytics but through out the video you have discuss about how to calculate hub and authority ranking. i dont find anything related to Big data analytics. HITS algorithm for ranking would be better.

  • @nikhildange123
    @nikhildange123 6 лет назад

    If k is not mention in the question then can we assume as k=1?

  • @hamzabilal6465
    @hamzabilal6465 4 года назад

    Wow aapnay bohat acchay say samjhaya hai ayr aik hamaray sir jinko sirf bhaagnay ki jaldi rehti hai 😡😡😡 thanks a lot

  • @divyasampathirao7306
    @divyasampathirao7306 6 лет назад

    mam was the intial hub vector 'u' is same for all the given graphs?

  • @muhammadnaveed5056
    @muhammadnaveed5056 7 лет назад

    waaaoo mam u r great teacher in world u make it very simple for me.

  • @namansingh7721
    @namansingh7721 3 года назад

    How can you normalize already normalized vectors, I guess each time we got to multiply by matrix but you are simply normalizing again so no matter what answer won't change. sorry to say but I think wrong concept

  • @parttimedude5440
    @parttimedude5440 3 года назад

    Thank You, Ma'am!

  • @0625faith
    @0625faith 6 лет назад +1

    thank you sooo much. It helps me a lot

  • @saurabhsingh8996
    @saurabhsingh8996 5 лет назад

    Would have been a great video. if question and use of variables were shown in a better way

  • @abhishekhawale6052
    @abhishekhawale6052 6 лет назад

    Mam in exams they given a diagram to find hubs and authority where there are 7 edges so how can we consider 7*7 matrix

  • @marcomarkproductions
    @marcomarkproductions 6 лет назад +2

    what is 'k'

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад +1

      Step count in algorithm implementation. A k-step application of the Hub-Authority algorithm entails applying for k times first the Authority Update Rule and then the Hub Update Rule.

  • @rashijain4207
    @rashijain4207 7 лет назад

    Nice Explanation mam..Please can u upload video on k-mediods with example

  • @mehtabahmed5725
    @mehtabahmed5725 7 лет назад

    i want to ask some other question regarding the information retrieval techniques kindly advise me from which forum i can join and able to ask the questions? w8ng for reply

    • @AnuradhaBhatia
      @AnuradhaBhatia  7 лет назад

      Mehtab Ahmed Hello,
      What queries you have regarding Information Retrieval, kindly let me know.
      Regards

    • @mehtabahmed5725
      @mehtabahmed5725 7 лет назад

      Hello Madam

    • @mehtabahmed5725
      @mehtabahmed5725 7 лет назад

      I have many quetion but this time i want to ask
      Is page ranking query dependent?
      What is Faign Algorithm

  • @ganeshvadcar8098
    @ganeshvadcar8098 6 лет назад

    is it necessary to have Adjacency matrix to solve this problem? but ma'm the matrix that you have considered do not have diag elements "0" so I am confused here. please clear my doubt

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад

      Ganesh Vadcar kindly mail ur doubt..go on to the website and post a query please

    • @ganeshvadcar8098
      @ganeshvadcar8098 6 лет назад

      yes, I have done that, thank you

  • @blueguy5588
    @blueguy5588 3 года назад

    Extremely helpful, thank you!

  • @grinalpatel1012
    @grinalpatel1012 7 лет назад

    Superb mam …thanks alot

  • @rawmusicbynm3540
    @rawmusicbynm3540 2 года назад

    the video is wrong after k=2

  • @siddhiipte876
    @siddhiipte876 6 лет назад

    what is k in adjacency matrix?

  • @aswani4402
    @aswani4402 7 лет назад

    very nice explanation mam , thank you

  • @amarimuthu
    @amarimuthu 7 лет назад

    Hi Can you please make a video with an example for "Dynamic time warping" for Time series . I just could find any good resources on RUclips. Thanks.

  • @rahulbharsadiya2897
    @rahulbharsadiya2897 6 лет назад

    what is the hadoop architecture?,is it the same HDFS ?,plz reply fast.thanks in advance

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад

      Rahul Bharsadiya yes...it is Hadoop Distributed File System..

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад

      Rahul Bharsadiya Refer to my notes on my site for Big Data

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад

      Rahul Bharsadiya all the best

    • @rahulbharsadiya2897
      @rahulbharsadiya2897 6 лет назад

      Thanks for your videos, support and for sure the notes ,thanks for good wishes

    • @AnuradhaBhatia
      @AnuradhaBhatia  6 лет назад

      You are always welcome. You are from which college? Any help please feel free to contact.

  • @kingleomessi9707
    @kingleomessi9707 6 лет назад

    Mam can u teach friends of friends algorithm

  • @KarthikBalan27
    @KarthikBalan27 6 лет назад

    Thank You Mam. Best explanation.

  • @hemanthkumargundumilli
    @hemanthkumargundumilli 3 года назад

    Please share the ppt madam

  • @korkorkotey-afutu8637
    @korkorkotey-afutu8637 6 лет назад +1

    youre a great teacher :)

  • @sibinthomas9681
    @sibinthomas9681 6 лет назад

    No fake Accent. Crisp to the point explanation. Thanks a lot!!

    • @parshvajain4556
      @parshvajain4556 6 лет назад +2

      She still has to learn a lot from you to be where you are right now.

  • @mansingraomore4385
    @mansingraomore4385 6 лет назад

    Really helpful

  • @kunalborge5474
    @kunalborge5474 7 лет назад

    yes it was because of you my papar was damn easy maam greatwork..

  • @jayeshchindarkar
    @jayeshchindarkar 7 лет назад +1

    thank u maam....ur videos of BDA n CSM helped us a lot in our exams

  • @arnavsharma7414
    @arnavsharma7414 7 лет назад

    Thank you so much Ma'am much appreciated !

  • @gayuravi2812
    @gayuravi2812 6 лет назад

    Mam can u explain fuzzy system

  • @keerthu6022
    @keerthu6022 5 лет назад

    Thank u mam😍

  • @kunalborge5474
    @kunalborge5474 7 лет назад

    Thank u a ton....maam

  • @mehtabahmed5725
    @mehtabahmed5725 7 лет назад

    thx alot madam

  • @myworldAI
    @myworldAI 3 года назад

    6 star video

  • @abid_dasurkar
    @abid_dasurkar 2 года назад

    BDA k liye kon aaya hai ??😂

  • @mitaleeb6362
    @mitaleeb6362 7 лет назад

    Thanks a lot!!
    You are the savior. :)