2nd method to evaluate the definite integral using Laplace transform

Поделиться
HTML-код
  • Опубликовано: 4 янв 2025

Комментарии • 9

  • @slavinojunepri7648
    @slavinojunepri7648 День назад

    Excellent

  • @lagnugg
    @lagnugg День назад

    nice solution! btw from 1:04 we can use one of Frullani's formulas with f(x) = exp(-x) and get the result right away

  • @PULLABHATLAMEDHA
    @PULLABHATLAMEDHA 2 дня назад

    Hi. Just checked. Integrate 0 to ♾️ ln(bx)/(√x)(√x+1)(√ax+1) equals 1/2(ln(b^2/a)*integral above without log factor in the numerator. So, integral is zero only when b^2=a

    • @cipherunity
      @cipherunity  2 дня назад +1

      I already started working on it. You shall see some thing soon.

    • @cipherunity
      @cipherunity  15 часов назад +1

      It is done. I just posted the video about the integral you asked.

  • @tfg601
    @tfg601 День назад

    Since the derivative of ln(1-x) is -1/(1-x), shouldnt you need a negative to cancel the negative from the derivative?

    • @cipherunity
      @cipherunity  День назад

      That is correct. ln(1 - x))^(-2+1)/(-2+1) and we got our negative