A tricky question from Harvard Entrance Exams || No Calculator Allowed 📵

Поделиться
HTML-код
  • Опубликовано: 22 ноя 2024

Комментарии • 7

  • @에스피-z2g
    @에스피-z2g 25 дней назад +1

    64^4-32^5=
    2^24-2^25=
    2^24(1-2)=
    -2^24

  • @adgf1x
    @adgf1x 23 дня назад +1

    ?=2^24-2^25=(-- 2^24).ans

  • @JamesKang95
    @JamesKang95 28 дней назад +2

    2^24=[(2^6)^2]^2,2^6=64
    64^2=(60+4)^2=3600+480+16
    =4096
    4096^2=(4100-4)^2=4100^2-32800+16=16777216

  • @PetriTemiseva
    @PetriTemiseva 27 дней назад +1

    There is a mistake here. 4x1024=4096, not 2096 as shown in solving the problem.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 28 дней назад +1

    32^1 4^16^1 4^4^4^^1 2^2^2^2^2^2^1 1^1^1^1^1^2^1 2^1 (x ➖ 2x+1).

  • @RadekBuczkowski-h2y
    @RadekBuczkowski-h2y 28 дней назад +1

    This way of calculating is a bit overcomplicated, which means it is too easy to make a mistake. During an exam there is little time to solve it, so a mistake is very probable. I think the answer should either be left as -2^24 or -64^4, or it should be calculated using the standard multiplication technique as:
    - 64 * 64 = 4096
    - 4096 * 4096 = - 16777216