YOLOv8 | How to Train for Instance Segmentation on a Custom Dataset | Computer Vision

Поделиться
HTML-код
  • Опубликовано: 11 ноя 2024

Комментарии • 22

  • @kemaldarc9665
    @kemaldarc9665 8 месяцев назад

    Thanks for the video.

  • @kvnptl4400
    @kvnptl4400 9 месяцев назад +1

    Hey, why do you call this as a instance segmentation? isn't it just a semantic segmentation? here you have same id for all the classes belong to same class.

  • @shruthiap2652
    @shruthiap2652 8 месяцев назад

    I need a pre-training model with a resolution size of 4096 * 4096. The default size is 640.. how to handle this larger image sizes in yolov8

  • @usmanumer9925
    @usmanumer9925 11 месяцев назад

    After cloning yolov8 from git repository how we will train it by python train.py its working fine but doesnt show any progress showing no result after execution

  • @gjin2518
    @gjin2518 5 месяцев назад

    how can we get high accuracy?

  • @ashfaqtest
    @ashfaqtest Год назад

    RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 47 but got size 0 for tensor number 1 in the list.
    Sentry is attempting to send 1 pending events
    I am getting this error continuously when I train it

  • @eleftherito824
    @eleftherito824 Год назад

    Hey thanks for your incredible work! I did this custom training and try to put a video in the "source" and didnt worked....
    specifically i get the error "Sentry is attempting to send 2 pending events
    Waiting up to 2 seconds
    Press Ctrl-C to quit"
    Do you have any idea on this??

  • @Iztheticgaming
    @Iztheticgaming Год назад +6

    Sorry but this is my honest opinion: This is the worst video on training int segmentation on custom dataset, you simply used the example notebook from ultralytics, and just worded off as whatsoever was there in the notebook and downloaded a already configured dataset for instance segmentation and trained the model on it.

  • @AbdullahJirjees
    @AbdullahJirjees Год назад

    Thanks for the video, any idea how to remove the bounding box (the thick frame) around the object that is segmented?

  • @mdriad4521
    @mdriad4521 Год назад

    please make videos about Encoder Decoder,Attention Models, Transformers.

  • @AseelKareem-ns7ql
    @AseelKareem-ns7ql 7 месяцев назад

    if I want just segmentation in yolov8 and I don't need a bounding box what i have to do @DSwithBappy

  • @sayedhasan5997
    @sayedhasan5997 Год назад +1

    how to perform classification on custom dataset?

    • @dswithbappy
      @dswithbappy  Год назад +1

      will create soon.

    • @sayedhasan5997
      @sayedhasan5997 Год назад

      @@dswithbappy thank you. Plz upload that part as soon as possible..

  • @ashfaqtest
    @ashfaqtest Год назад

    RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 47 but got size 0 for tensor number 1 in the list.
    Sentry is attempting to send 1 pending events

  • @arpittalmale6468
    @arpittalmale6468 Год назад

    Thank you sir

  • @filipelyrio
    @filipelyrio Год назад

    Thanks.

  • @srihariswain2128
    @srihariswain2128 11 месяцев назад

    😍😍😍

  • @shuvroislam3836
    @shuvroislam3836 Год назад

    ❤❤

  • @obaidulhasansouhag985
    @obaidulhasansouhag985 4 месяца назад

    In my code it is showing -
    Ultralytics YOLOv8.0.28 🚀 Python-3.10.12 torch-2.3.0+cu121 CPU
    yolo/engine/trainer: task=segment, mode=train, model=yolov8s-seg.pt, data=data.yaml, epochs=10, patience=50, batch=16, imgsz=640, save=True, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, hide_labels=False, hide_conf=False, vid_stride=1, line_thickness=3, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, fl_gamma=0.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, save_dir=runs/segment/train24
    Traceback (most recent call last):
    File "/usr/local/bin/yolo", line 8, in
    sys.exit(entrypoint())
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/cfg/__init__.py", line 266, in entrypoint
    getattr(model, mode)(**vars(cfg))
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/engine/model.py", line 210, in train
    self.trainer = self.TrainerClass(overrides=overrides)
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/v8/segment/train.py", line 25, in __init__
    super().__init__(cfg, overrides)
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/engine/trainer.py", line 121, in __init__
    self.data = check_det_dataset(self.data)
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/data/utils.py", line 190, in check_det_dataset
    data = check_file(dataset)
    File "/usr/local/lib/python3.10/dist-packages/ultralytics/yolo/utils/checks.py", line 258, in check_file
    raise FileNotFoundError(f"'{file}' does not exist")
    FileNotFoundError: 'data.yaml' does not exist

  • @ashfaqtest
    @ashfaqtest Год назад +1

    RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 47 but got size 0 for tensor number 1 in the list.
    Sentry is attempting to send 1 pending events