A Nice Math Olympiad Geometry Question | 2 Different Methods

Поделиться
HTML-код
  • Опубликовано: 8 фев 2025
  • Try This Nice Math Olympiad Geometry Question | 2 Different Methods
    Join this channel to get access to perks:
    / @mathbooster

Комментарии • 27

  • @sharonmarshall3671
    @sharonmarshall3671 Год назад +3

    I didn’t use trigonometry because if triangle AEC is isosceles the base angles are equal therefore angle CAE is x+15. So x+15 +x+15 + 90 = 180 ie 2x + 30 = 90 so 2x = 60 and therefore x=30.

  • @kyriakosmonodri4601
    @kyriakosmonodri4601 Год назад +2

    I bring CK perpendicular to AB. Hence AD=DB=k, AB=2k, and CK=h. From the right triangle CKB because B=30 then CB=2h. (1)._ From the right triangle CKD because angle D=45 then CD=h (root 2). (2)._ I bring AH perpendicular to BC. From the right triangle AHB because angle B=30 then AH=k. (3)._ In the triangle ACB, CD is a median, and from the median theorem I find AC=k (root 2). (4),_ the right triangle AHC {because (3) (4)}, is isosceles AH=CH and (angle CAH)=(angle ACH) =45 and because angle DCB=15 {ACB-DCB=ACD} tending X=(angle ACD)=30

  • @daddykhalil909
    @daddykhalil909 Год назад +2

    Although the second method is complicated but it is very interesting.
    Thank you.

  • @devondevon4366
    @devondevon4366 2 года назад +1

    30
    Let DB =1 (any other number could be used), then AD also = 1
    Now you have a Side 1, an Angle 135, and another angle 30 from triangle BDC
    Using the Law of Sine a/b = sine A / sine B, the unknown side b = 1.932
    For triangle ACD, in which X = angle C, we have
    a Side of 1, another side of 1.932, and a 45-degree angle . Using the law of cosine,
    yield 30 degrees for X
    So first let AD = any length, and you you have ASA, then the new side will
    lead to SAS.

  • @alinayfeh4961
    @alinayfeh4961 Год назад

    Triangle 🔺️ ½=a/b(sin)= degree 30, Angle ACD(CDB)

  • @jeanmarcbonici9525
    @jeanmarcbonici9525 2 года назад

    In the first method it is easy to prove that E is the circumcenter of triangle ACD and therefore AngleACD=1/2*AngleAED=60°/2=30°

    • @hussainfawzer
      @hussainfawzer Год назад

      How to prove point E is the circumcenter of the triangle ACD ?

    • @jeanmarcbonici9525
      @jeanmarcbonici9525 Год назад

      @@hussainfawzer From 3'50, the triangle ADE is equilateral because AD=DE and angleADE=60° therefore on the one hand AD=ED=EA. On the other hand the triangle CDE is isosceles at E because angleDCE=angleCDE=15° and therefore EC=ED. We conclude that ED=EA=EC and therefore E is the circumcenter of the triangle ADC.

  • @vagrambagratunian2876
    @vagrambagratunian2876 2 года назад

    Excellent, as always.

  • @advaykumar9726
    @advaykumar9726 2 года назад +1

    Why don't you ever use m-n cot theorem?
    It's much easier that way

    • @MathBooster
      @MathBooster  2 года назад

      Because the first method is by geometry method.
      And the second method is by trigonometry (sine rule). In the video, it is taking time because I am writing every step. If you solve it by yourself, you will get that sine rule and m-n cot theorem both will take nearly equal time.

    • @advaykumar9726
      @advaykumar9726 2 года назад +1

      @@MathBooster still m n cot theorem is faster

  • @ngneerin
    @ngneerin Год назад

    if AD = BD, then isn't ACD = DCB?

  • @beeruawana6662
    @beeruawana6662 Год назад

    obfuscating the question and never overwriting on the figure

  • @ArcheroHkers
    @ArcheroHkers 2 года назад

    v good explain😍🥰

  • @zawodnikgrajacywosupochodz2589
    @zawodnikgrajacywosupochodz2589 2 года назад +1

    1

    • @mikolaj79
      @mikolaj79 2 года назад +1

      Życzę sukcesów w osu i w matmie

    • @zawodnikgrajacywosupochodz2589
      @zawodnikgrajacywosupochodz2589 2 года назад +2

      @@mikolaj79 haha

    • @holyshit922
      @holyshit922 Год назад +1

      Miarę tego kąta można łatwo policzyć z twierdzenia sinusów i twierdzenia cosinusów
      Z twierdzenia sinusów w BCD można wyrazić długości boków trójkąta BCD za pomocą długości boku BD
      Z twierdzenia cosinusów w ACD wyrażamy długość boku AC za pomocą długości boku BD
      a następnie także z twierdzenia cosinusów wyznaczamy cosinus kąta x
      Zadanie dość łatwe

  • @ArcheroHkers
    @ArcheroHkers 2 года назад

    3🥰🥰

  • @devondevon4366
    @devondevon4366 2 года назад

    30 degree

  • @ArcheroHkers
    @ArcheroHkers 2 года назад

    sir😍🥰

  • @ArcheroHkers
    @ArcheroHkers 2 года назад

    math🥰🥰🥰

  • @vrajprajapati3645
    @vrajprajapati3645 Год назад +1

    Are you Indian ?

  • @ahmadothman9925
    @ahmadothman9925 2 года назад

    31 degree