Fluid Acceleration and Material Derivative Animation #1

Поделиться
HTML-код
  • Опубликовано: 10 дек 2024

Комментарии • 26

  • @kamalkhalil118
    @kamalkhalil118 3 года назад +12

    This is the best explanation of the "Acceleration and Material Derivative" phenomenon that one can find ever! Thank you very much!

    • @NiLTime
      @NiLTime  3 года назад +1

      Thank you for your reply... wlc btw ^^

    • @kamalkhalil118
      @kamalkhalil118 3 года назад

      @@NiLTime My pleasure ^^

  • @joyia.1
    @joyia.1 3 года назад +2

    Nailed it. I am saving this video's link so I can share it with my juniors.

  • @sharemarketkoninja6929
    @sharemarketkoninja6929 2 года назад +2

    RUclips's videos are better than our campus lecturers explanation.

  • @verygood6625
    @verygood6625 2 года назад

    This is the ultimate and simple and clear explanation of the material derivative. There can never be a better video than this on this topic

  • @is-ig4zh
    @is-ig4zh 3 года назад +1

    Oh, my goodness! This video is gem!

  • @mechadana88
    @mechadana88 Год назад +1

    should've seen this during undergrad lol. thanks for the animation!

  • @ParamJivrajaniphb
    @ParamJivrajaniphb 2 года назад

    great animation and video

  • @hakeemnaa
    @hakeemnaa 2 года назад

    thank you
    great animation
    why you dont have more views

  • @三民東大物理
    @三民東大物理 Год назад +2

    It is so interesting that the material derivative is a Lagrangian concept but is represented by Eulerian context. Does this mean the material derivative is a "field quantity"?

    • @amrithmadhu1523
      @amrithmadhu1523 5 месяцев назад +1

      Yes material derivative is indeed a field quantity .

  • @pramodkollabathula
    @pramodkollabathula 4 года назад

    Great Explanation 👍

    • @NiLTime
      @NiLTime  4 года назад

      Thanks man ^^

  • @VandanaSaraogi
    @VandanaSaraogi Год назад

    best video

  • @PersonNone-d3y
    @PersonNone-d3y Год назад

    👍👍👍👍👍👍👍👍👍👍👍👍👍

  • @antoine1407
    @antoine1407 9 месяцев назад +1

    So it means that from a Lagrangian point of view those two terms are non zero?

    • @arturoquintanar4078
      @arturoquintanar4078 Месяц назад

      I think the AI lady Made a mistake at the end of the video. The lagrangian derivative following the fluid parcel Is not Zero because the advective term Is not Zero along the x axis. The video Is quite good, though

  • @saihamtubash9238
    @saihamtubash9238 5 месяцев назад

    legit ****ing best

  • @sophia2928
    @sophia2928 3 года назад

    Thank you!

  • @kamui817
    @kamui817 3 года назад

    MANGEKYO SHARINGAN

  • @p.krishna5956
    @p.krishna5956 Год назад +1

    why do you have Itachi Uchiha as you pfp when you are uploading educational content lol 😂😂

  • @specter1001
    @specter1001 3 года назад

    i love you

    • @NiLTime
      @NiLTime  3 года назад

      thanks and same to you ^^