A quick integral with a beautiful result

Поделиться
HTML-код
  • Опубликовано: 18 янв 2025

Комментарии • 27

  • @mikecaetano
    @mikecaetano Месяц назад +6

    When I saw that 2/5ths pi in the thumbnail I thought, something golden is gonna pop up in that before its over.

    • @MathPhysRadi
      @MathPhysRadi Месяц назад

      same

    • @frendlyleaf6187
      @frendlyleaf6187 Месяц назад +1

      Isn't the coefficient of x² in the integral just negative of the other root of x² = x+1 besides phi.

  • @premdeepkhatri1441
    @premdeepkhatri1441 Месяц назад +5

    Thank you for this nice integration solution. I learned also about how to visualize the problem to solve.

  • @sledge7459
    @sledge7459 Месяц назад

    i solved this by factoring the denominator into x^2 terms and doing partial fractions to get a couple inverse tangent integrals. a bit messy but it led to some nice applications of euler’s formula and hyperbolic trig functions

  • @CM63_France
    @CM63_France Месяц назад

    Hi,
    "terribly sorry about that" : 1:17 , 2:05 , 2:46 , 4:22 , 4:50 , 6:22 ,
    "ok, cool" : 2:38 , 5:22 .

  • @manstuckinabox3679
    @manstuckinabox3679 Месяц назад

    This reminds me of the integral of 1/x^n+1, as an anti-derivative,, we can use our knowledge of complex numbers to decompose the polynomial into the product of (x-e^i-2pi/n) which actually for even n, we'll end up with (x^2-cos(2pi/n)x+1) since the roots come in conjugate pairs, so essentially we’ll end up with a partial fraction decomposition and a bunch of easy integrals… I have no idea how this is relevant but it’s interesting! KEEP UP THE FIRE WORK ME BOI KAMAL Edit: I think it’s relevant because we can write the following as 1/(x^2-e^2pi*i/5)( (x^2-e^-2pi*i/5))

  • @hassanfeizabadi9736
    @hassanfeizabadi9736 Месяц назад +3

    Very nice solution.

  • @GenusLongus
    @GenusLongus Месяц назад +2

    Beautiful and delicious integral thanks for video!!

  • @محمدعبدالمحسن-ج5س
    @محمدعبدالمحسن-ج5س Месяц назад

    There is an general form of this integal solving by ramanujan's master theorem we can drive this integral and do partial dirrivatives to look more harder

  • @MrWael1970
    @MrWael1970 Месяц назад

    Innovative solution. Thanks.

  • @anti_serum1948
    @anti_serum1948 Месяц назад

    Love the recent videos!

  • @MathPhysRadi
    @MathPhysRadi Месяц назад

    Great video i hope for more in the future

  • @lokeshraybarman7007
    @lokeshraybarman7007 Месяц назад +3

    Beautiful integration ❤❤❤

  • @johanvl8579
    @johanvl8579 Месяц назад +18

    The thumbnail said x, not x² 😢

  • @Mario_Altare
    @Mario_Altare 26 дней назад

    Wonderful video, but (dear Mr. RUclips) why the automatic dubbing?

  • @sundaresanabishek5127
    @sundaresanabishek5127 Месяц назад +2

    Heyy broo friend from Sri Lanka ❤🎉

  • @mcalkis5771
    @mcalkis5771 Месяц назад

    I thought the hardest part of this video was gonna be determining the cosine of 2π/5 from scratch.

  • @algoboi
    @algoboi Месяц назад +2

    bro, what app are you using?

    • @maths_505
      @maths_505  Месяц назад +3

      @@algoboi Samsung notes

  • @surajrakshit5930
    @surajrakshit5930 Месяц назад +1

    Got a nice integral problem as dinner, i like!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад

    cos72=(√5-1)/4..dovrei fattorizzare il denominatore...

  • @maxmoedough6401
    @maxmoedough6401 Месяц назад

    Very tasty, I like!