247 - Conditional GANs and their applications

Поделиться
HTML-код
  • Опубликовано: 12 дек 2024

Комментарии • 69

  • @rubenguerrerorivera7462
    @rubenguerrerorivera7462 8 месяцев назад +1

    So beautifully explained, so smooth and highly enjoyable! Thanks a lot Dr.

  • @vafakahnamoie29
    @vafakahnamoie29 2 года назад +4

    Sir, your tutorials make confusing and complicated AI topics to easy and comprehensible concepts for us. Thanks a lot professor

  • @cplusplus-python
    @cplusplus-python 3 года назад +8

    So excited to get to the Code part of GAN, thanks Prof.

  • @ciancian2861
    @ciancian2861 2 года назад +3

    Thank you!! I'm a data science student and I will start my thesis on this topic next week. Great introduction.

  • @hessame9496
    @hessame9496 2 года назад +1

    I cannot thank you enough for sharing your knowledge and preparing and publishing these great tutorials.

  • @rahchandr
    @rahchandr 3 года назад +4

    Sreeni sir, great going, these sessions are profoundly useful.

  • @deepalisharma1327
    @deepalisharma1327 10 месяцев назад +1

    Amazing work, really appreciate your efforts. 🙏🏻 Please keep making such videos.

  • @hanemellethy9036
    @hanemellethy9036 2 года назад +1

    Great tutorial. Very simple and informative video. I really appreciate your easy and helpful way of explanation. Thanks a million.

  • @calvinchristiano7119
    @calvinchristiano7119 2 года назад

    Thankyou sir for this amazing tutorial, very clear explanation, very patient teacher....i really appreciate that. Stay healthy sir

  • @Tiago_R_Ribeiro
    @Tiago_R_Ribeiro 2 года назад

    You are very good and very patient teacher. I watch your videos every single day. Thanks for making videos for mere mortals like me! :D

  • @eli_m6556
    @eli_m6556 3 года назад +2

    Great vid as always. Your videos are great to watch even if I’m not working on the given topic.

    • @DigitalSreeni
      @DigitalSreeni  3 года назад +1

      If you only watch videos on topics that you relate to, then how do you learn about other topics? I think it is very important for us to learn about various topics so we can find the one that really interests us.

  • @wessauder7708
    @wessauder7708 2 года назад +1

    Thank you so much for this detailed and easy to follow demonstration! It's a major component of my grad research and you have tied the concepts together so well that it really complements and reinforces my understanding.

  • @TheCzarsoham
    @TheCzarsoham 3 года назад +1

    Thank you for the clear explanation! I really appreciate your videos

  • @prashantjaiswal5260
    @prashantjaiswal5260 2 года назад

    Your videos are genuinely knowledgable sir ...Keep providing with such great contents .
    Please provide these slides also if possible

  • @parthmodi5734
    @parthmodi5734 2 года назад

    You deserve a huge round of applause, Thanks for this great content. God bless you:)

  • @nprestine
    @nprestine 4 месяца назад

    You are the man!
    Thank you, keep up the good work.

  • @maryammoosavi1007
    @maryammoosavi1007 5 месяцев назад

    wonderful explanation 👍🏻👍

  • @cheemay
    @cheemay 2 года назад

    Great Informative video. Now understand conditional GAN. Thanks #DigitalScreeni
    Waiting For StackGan Implementation

  • @mohitmeena541
    @mohitmeena541 2 года назад

    worth every second. thanks a lot!

  • @karamsahoo6852
    @karamsahoo6852 3 года назад

    Yes sir please make more videos on different GAN architectures.

  • @mohamednaji6178
    @mohamednaji6178 3 года назад +1

    thank you so much you are amazing I have learned so much from you

  • @yanivnoema6848
    @yanivnoema6848 2 года назад

    Thank you for this video!

  • @rajeevgoel6170
    @rajeevgoel6170 Год назад

    Very Good Explained Sir

  • @profesorjan7614
    @profesorjan7614 2 года назад

    Excellent explanation!!!!!!!! Thanks!

  • @aashwinsharma1859
    @aashwinsharma1859 2 года назад

    Thnx a lot for the wonderful explanation

  • @aqibmumtaz1262
    @aqibmumtaz1262 Год назад

    Excellent Great video sir

  • @emmanuellabudu9524
    @emmanuellabudu9524 2 года назад

    Awesome video. Thank you.

  • @khalidelamraoui256
    @khalidelamraoui256 3 года назад +1

    thank you for the effort , can i ask you to make an applications for ESRGAN to understand it very well

  • @avinolia
    @avinolia 8 месяцев назад

    can we use GANs or CGANs to balance the dataset? Please explain sir

  • @MilesBellas
    @MilesBellas 6 месяцев назад

    Great videos!😊

  • @Suman-zm7wx
    @Suman-zm7wx 3 года назад

    Finally you are back in the game sir 💚💚

  • @mtahirrasheed5538
    @mtahirrasheed5538 2 года назад

    Can you make videos on the transformers? Vision Transformer for the classification. The main issue is in understanding the input/output shape, number of patches for different images sizes etc. Thanks in advance.

  • @mariovrpereira
    @mariovrpereira Год назад

    very good, thank you

  • @mustajabhussain9167
    @mustajabhussain9167 2 года назад +1

    Very helpful video. Can you please tell me that can we perform semantic segmentation using conditional GAN. In this video, you talk about getting real image from semantic segmented image. But can we perform the task we did using UNet architecture (getting semantic segmented mask of specific image)

    • @RohanPaul-AI
      @RohanPaul-AI 2 года назад +1

      Hi Mustajab - Stumbled upon your comment, and I think this paper did what you are talking about - arxiv.org/abs/1708.05227
      They used conditional GAN and train a semantic segmentation CNN along with an adversarial network that discriminates segmentation maps coming from the ground truth or from the segmentation network for BraTS 2017 segmentation task
      More specifically, they used patient-wise ”U-Net” as a generator and ”Markovian GAN” as an discriminator.

  • @ameerazam3269
    @ameerazam3269 3 года назад

    Thanks you Sir ... UOH love ..

  • @VeiyoMwatihanye
    @VeiyoMwatihanye Год назад

    Is there a video that can help me with binarization using GAN so i can watch that one

  • @drprashantpaikrao
    @drprashantpaikrao Год назад

    Sir, how we can use GAN for noise removal in document images?

  • @javlontursunov6527
    @javlontursunov6527 10 месяцев назад

    Thank you so much :)

  • @rs9130
    @rs9130 2 года назад

    Anything is possible and everything is easy with DIgital Sreeni

  • @drprashantpaikrao
    @drprashantpaikrao Год назад

    Sir, do you have made any video on deep dense GAN? If yes please send me it's lesson number or link... 🙏🏼🙏🏼🙏🏼

  • @anonnozahir7375
    @anonnozahir7375 2 года назад

    Sir can I use this code for doing RGB to Grayscale images?

  • @dannyboichess
    @dannyboichess 11 месяцев назад

    thank you sir

  • @PUBUDUCG
    @PUBUDUCG 3 года назад

    Good information . . .

  • @umairsabir6686
    @umairsabir6686 2 года назад

    Hi Sreeni,
    You were great as always. Do you have Mask RCNN using TF2 in your roadmap or not ?

  • @botirkarim9293
    @botirkarim9293 2 года назад

    Keep continue good luck!

  • @fatmagulkurt2080
    @fatmagulkurt2080 3 года назад

    How can I apply k-fold cross validation in the 195. tutorial(195 - Image classification using XGBoost and VGG16 imagenet as feature extractor). I wish you may help me in this situation. Because the most common problem in practice is overfittig. How can I overcome this in this code Thank you for all your effort Sir.

  • @borundas6443
    @borundas6443 3 года назад

    Sir, do you have any video how to make images from text using GANs? I really need some good tutorial on that.

  • @Darshan0070
    @Darshan0070 3 года назад

    How to match images for similar products??

  • @gunjannaik7575
    @gunjannaik7575 2 года назад

    How to randomize the number of images that are passed in each epoch?

  • @Selim-of8gq
    @Selim-of8gq 3 месяца назад

    thank you

  • @saminsolouki
    @saminsolouki 5 месяцев назад

    thank you so muchhhhhh

  • @alanpress3019
    @alanpress3019 3 года назад

    Sir, Thank you so much. Are you planning to do some tutorials on meat-learning in the future, e.g., learning to learn gradient descent by gradient descent, or learning to learn without gradient descent by gradient descent, and keras implementation?

  • @mekuriawayelegn1598
    @mekuriawayelegn1598 2 года назад

    Thanks sir.

  • @sajins9708
    @sajins9708 3 года назад

    Sir, would you please upload tutorials on object detection algorithms like faster RCNN and fast RCNN.

    • @DigitalSreeni
      @DigitalSreeni  3 года назад

      Sometime in future but definitely not in the next couple of months. Thanks for the suggestion though, I need to find time to put together code that works and then plan videos. Takes time.

  • @agenticmark
    @agenticmark 12 дней назад

    midjourney starts making a lot more sense.....

  • @caiyu538
    @caiyu538 3 года назад

    Thumb up your video though it is busy for something else recently.

  • @furry2fun
    @furry2fun Год назад

    sir can you please share these slides

  • @saritagautam3483
    @saritagautam3483 2 года назад +1

    subscribed 🤙

  • @ssangeetha7497
    @ssangeetha7497 3 года назад +1

    Really I got interest in deep learning methods on watching ur tutorials.sir I wish to clarify doubts in my deep learning based work . So can you share your email I'd.