A Linear Diophantine Equation

Поделиться
HTML-код
  • Опубликовано: 9 янв 2025

Комментарии •

  • @md2perpe
    @md2perpe 3 года назад +8

    Even faster:
    The equation can be written as 3x + 2y = 73 - 5z. Given any value of z, based on 3*1 + 2*(-1) = 1, we get (x, y) = (73-5z)*(1, -1) + (2w, -3w), i.e.
    (x, y, z) = (73-5z+2w, 5z-73-3w, z), where z and w run over all integers.

    • @md2perpe
      @md2perpe 3 года назад +4

      Some theory:
      A Diophantine equation of form ax + by = c can be solved by first finding one particular solution and then adding the solutions of the homogeneous equation, just as when you solve linear differential equations. If you can find x1, y1 such that a x1 + b y1 = 1 then a particular solution is given by (xp, yp) = (c x1, c y1). The solutions of the homogeneous equation are given by (xh, yh) = (bn, -an) for all integers n. Thus the complete set of solutions are given by (x, y) = (xp, yp) + (xh, yh) = (c x1 + bn, c y1 - an).

  • @dandjr1546
    @dandjr1546 Год назад +2

    I did this for mod 2 and mod 5 and got different equations. But then I realized that, since k and m are any integers, then my constants (call them k* and m*) could be linear combinations of k and m. And they are, it turns out that k*=k and m*=k-m+2. So either approach gives you the same (X,Y,Z) solutions.

  • @242math
    @242math 3 года назад +8

    everything went well with this one, excellent presentation

    • @SyberMath
      @SyberMath  3 года назад

      Thank you! 💖

    • @leif1075
      @leif1075 3 года назад

      @@SyberMath At 2:03 but if 5z is an even multiple of 5 then its 0 mod 2 not 1mod 2

    • @leif1075
      @leif1075 3 года назад

      @@SyberMath did i misunderstand?

    • @leif1075
      @leif1075 3 года назад +1

      @@SyberMath wait a minute at 3:58 why did you only write one 2 as negstive 1 you forgot the 2 in front of the z?? It doesn't make sense ti leave the other 2 like thst when you can rewrtie it as negative 1 also

  • @MathElite
    @MathElite 3 года назад +15

    Crossing my fingers for no premiere issues today
    and nice thumbnail

  • @carloshuertas4734
    @carloshuertas4734 3 года назад +2

    Another great explanation, SyberMath! I actually found multiple values of x,y, and z.

  • @זאבגלברד
    @זאבגלברד 3 года назад +1

    Please note that the solutions are spread on that plain in such a way that they are on parellel lines in that plain, starting at point 3k-11 , -2k+23 , -k+12 on the vector 1 , 1 , -1 (choose any k for a starting point), OR starting at -m-11 , -m+23 , m+12 on the vector 3 , -2 , -1 . One line for example is (-11 , 23 , 12 ) +t(3 , -2 , -1). Another one is (-11 , 23 , 12 ) +p(1 , 1 , -1)

    • @SyberMath
      @SyberMath  3 года назад

      A great way to look at it!

    • @aashsyed1277
      @aashsyed1277 3 года назад

      Thanks for being a member!!??!?!!!!!

  • @hsjkdsgd
    @hsjkdsgd 3 года назад +1

    Got some insight into solving such equations. Nice one, thanks!

  • @MARWAN_2822
    @MARWAN_2822 Год назад +1

    Hi ; we can write 3(x+z)+2(y+z)=73 ; we notice that : x+z odd ; so : x+z=2k+1 ( k in Z) then : y+z=35-3k
    Conclusion : S={(2k+1-k’; 35-3k-k’; k’)/ (k;k’)€Z^2}

  • @ARKGAMING
    @ARKGAMING 3 года назад +1

    (22,1,1) is a positive solution I found when searching for the boundaries of the positive solutions

  • @-basicmaths862
    @-basicmaths862 Год назад +1

    Here one is clear that if x is even then z is odd. x is odd then y is even.put y =x+a & z=x+b & solve.
    (x,y,z)=(1,10,10),(2,21,5) & many such solutions are found.

  • @DilipKumar-ns2kl
    @DilipKumar-ns2kl 3 года назад +2

    What if there are four variables in diophantine equation?

  • @nexustyrant5788
    @nexustyrant5788 3 года назад +1

    I never thought we could use mod
    Thanks!!

  • @klementhajrullaj1222
    @klementhajrullaj1222 3 года назад +1

    What is this "mod" in mathematics, can you explain me that with a video, if you want sure?!

  • @woodchuk1
    @woodchuk1 3 года назад +1

    Can the same approach be used to solve any linear Diophantine equation? Are the mods chosen arbitrarily?

    • @SyberMath
      @SyberMath  3 года назад

      It can be. I try to make some variables disappear so choosing 2 and 3 are not arbitrary

  • @paulnokleberg5188
    @paulnokleberg5188 Год назад

    I factored both sides one variable at a time by a method I'd used for other similar problems, and got x,y,z equal, respectively, 1, 5, and 12, which works. I have to admit I need to study up on modular arithmetic. Why, though, didn't modular arithmetic yield my same solution set? Again, I'm not familiar with modular arithmetic so I find it perplexing.

  • @harley_2305
    @harley_2305 3 года назад

    I'm not sure why but I picture Gru teaching me maths whenever I watch these videos

  • @ashoksatija678
    @ashoksatija678 3 года назад

    Without getting into all this headache, there can be a solution like.... X = 8, y= 2, z = 5...Sorry sir, I studied maths only up to 10th standard, so all your great explanation is far beyond my understanding.... But you are really a great teacher of mathematics... I salute you.. 👍👍👍✌✌

  • @aashsyed1277
    @aashsyed1277 3 года назад

    The best RUclips channel

  • @ARKGAMING
    @ARKGAMING 3 года назад +1

    An interesting fact I noticed when seeing the thumbnail
    When looking for *positive integer* solutions you can easily prove that 13≥z>0

    • @ARKGAMING
      @ARKGAMING 3 года назад

      Also 22≥x>0, 32≥y>0

  • @MushfiqRaiyan
    @MushfiqRaiyan 2 года назад

    very helpful

  • @xiaoshou6752
    @xiaoshou6752 3 года назад +2

    As this equation ressembles a that of a plane in 3D space, would it be possible to solve this using tools of 3D geometry?

    • @joshuadorsam4619
      @joshuadorsam4619 Год назад

      It would just be a line, we want to know integer solutions

    • @probropalzlive6961
      @probropalzlive6961 Год назад

      ​@@joshuadorsam4619consider x-2y=1 on a 2d plane, the gradient is 1/2, solutions are at (3,1), (5,2), i.e. solutions are of the form (2n+1,n) for n in Z, i suppose something similar could be done in 3d?

  • @markobavdek9450
    @markobavdek9450 3 года назад +1

    Parametric solution of equation with 3 variables, cool ✌️✌️Unfortunately, I am not so fluent in handling with mods....

    • @SyberMath
      @SyberMath  3 года назад +1

      Thanks. That's ok! Once you get the general idea and practice, it will become easier. Starting with two variables helps you to understand the general principles better.

  • @aashsyed1277
    @aashsyed1277 3 года назад

    So much I like this

  • @drpkmath12345
    @drpkmath12345 3 года назад +1

    Hey there! Nice work! I am back haha nice explanation btw! We can work some of the questions together!

    • @SyberMath
      @SyberMath  3 года назад

      Hello! Long time, no see! What's up? 😁

    • @drpkmath12345
      @drpkmath12345 3 года назад

      @@SyberMath Great haha wow! you have been covering a lot so far! Maybe we can work on a collab video together soon haha

    • @SyberMath
      @SyberMath  3 года назад +1

      Good to have you back! Sounds like a plan! 😁

    • @drpkmath12345
      @drpkmath12345 3 года назад

      @@SyberMath Hey, Sybermath! I sent you an email about it. Please check your email and get back to me :)

  • @mjones207
    @mjones207 3 года назад +6

    If x, y, and z ∈ ℤ⁺, this system has 77 solutions.

    Given x = -11 + 3k - m, y = 23 - 2k - m, and z = 12 - k + m,
    solutions lie in the region bound by 3k - m > 11, 2k + m < 23, and k - m < 12.
    There are 77 lattice points (k, m) in the interior region, yielding:

    (x, y, z) ∈
    {(1, 5, 12), (1, 10, 10), (1, 15, 8), (1, 20, 6), (1, 25, 4), (1, 30, 2),
    (2, 1, 13), (2, 6, 11), (2, 11, 9), (2, 16, 7), (2, 21, 5), (2, 26, 3), (2, 31, 1),
    (3, 2, 12), (3, 7, 10), (3, 12, 8), (3, 17, 6), (3, 22, 4), (3, 27, 2),
    (4, 3, 11), (4, 8, 9), (4, 13, 7), (4, 18, 5), (4, 23, 3), (4, 28, 1),
    (5, 4, 10), (5, 9, 8), (5, 14, 6), (5, 19, 4), (5, 24, 2),
    (6, 5, 9), (6, 10, 7), (6, 15, 5), (6, 20, 3), (6, 25, 1),
    (7, 1, 10), (7, 6, 8), (7, 11, 6), (7, 16, 4), (7, 21, 2),
    (8, 2, 9), (8, 7, 7), (8, 12, 5), (8, 17, 3), (8, 22, 1),
    (9, 3, 8), (9, 8, 6), (9, 13, 4), (9, 18, 2),
    (10, 4, 7), (10, 9, 5), (10, 14, 3), (10, 19, 1),
    (11, 5, 6), (11, 10, 4), (11, 15, 2),
    (12, 1, 7), (12, 6, 5), (12, 11, 3), (12, 16, 1),
    (13, 2, 6), (13, 7, 4), (13, 12, 2),
    (14, 3, 5), (14, 8, 3), (14, 13, 1),
    (15, 4, 4), (15, 9, 2),
    (16, 5, 3), (16, 10, 1),
    (17, 1, 4), (17, 6, 2),
    (18, 2, 3), (18, 7, 1),
    (19, 3, 2),
    (20, 4, 1),
    (22, 1, 1)}.

  • @yhamainjohn4157
    @yhamainjohn4157 3 года назад

    Beautiful !!!

  • @DilipKumar-ns2kl
    @DilipKumar-ns2kl 3 года назад

    How many different solutions?

  • @hassanshahbou296
    @hassanshahbou296 3 года назад

    My solution is x equals 8-a-b and y equals 4a-b+7 and z equals b-a+7 which is a and b are any numbers

  • @shafikbarah9273
    @shafikbarah9273 Год назад

    Thank you

  • @highlyeducatedtrucker
    @highlyeducatedtrucker 3 года назад

    You need to add a T-shirt to your merch with some kind of half-complete mathematical process on it and the caption "Now what is that supposed to mean?"

  • @aashsyed1277
    @aashsyed1277 3 года назад

    I love this

  • @manojsurya1005
    @manojsurya1005 3 года назад

    Good use of mod😀

  • @md2perpe
    @md2perpe 3 года назад +2

    3x + 2y + 5z = 73
    We can easily construct one solution: (x, y, z) = (1, 0, 14).
    Now, if (x', y', z') is another solution then 3(x-x') + 2(y-y') + 5(z-z') = 0.
    So let's solve 3u + 2v + 5w = 0.
    For a given value of w, we then should have 3u + 2v = -5w.
    We can also here easily construct one solution: (u, v) = (-5w, 5w), working for any value of w.
    If (u', v') is another solution then 3(u-u') + 2(v-v') = 0.
    So we shall now look at 3p + 2q = 0.
    All solutions to this are given by (p, q) = (2n, -3n).
    This gives (u, v) = (-5w+2n, 5w-3n) and then (x, y, z) = (1-5w+2n, 5w-3n, 14+w).
    Is this equivalent to (x, y, z) = (3k-m-11, 23-2k-m, 12-k+m) ?
    Yes, by (w, n) = (m-k-2, 2m-k-11), or reversely, (k, m) = (n-2w-11, n-w+9).

    • @SyberMath
      @SyberMath  3 года назад +1

      Spectacular!
      You can also proceed as follows after getting 3u+2v=-5w
      Let u=5a, v=5b, and w=-3a-2b
      1-x'=u, -y'=v, 14-z'=w
      x'=1-u=1-5a
      y'=-v=-5b
      z'=14-w=14+3a+2b
      (1-5a,-5b,14+3a+2b) also gives us the general solutions

    • @md2perpe
      @md2perpe 3 года назад

      @@SyberMath 3u + 2v = -5w has (u, v, w) = (1, 1, -1) as a solution. You don't get that solution with (u, v, w) = (5a, 5b, -3a-2b) unless you take a, b rational.

    • @SyberMath
      @SyberMath  3 года назад

      @@md2perpe oh yeah! That's right. Thanks. You're very good! 🤩

  • @faheemmubarak1961
    @faheemmubarak1961 3 года назад

    Superb

  • @seavhong4481
    @seavhong4481 3 года назад

    Excuse me , But how about in 4 variables?

  • @sgdufbaoaah8692
    @sgdufbaoaah8692 3 года назад

    good job bro

  • @vjlaxmanan6965
    @vjlaxmanan6965 3 года назад

    1, 5, 12 is a set of positive solns... :) for k = m = ... guess what ;)

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад

    Woww cool !!!

  • @anikhilreddy4135
    @anikhilreddy4135 3 года назад +1

    X=1 y=0 z=35

  • @csstardew
    @csstardew 2 года назад

    Great

  • @kousame7shi785
    @kousame7shi785 3 года назад +2

    X=6
    Y=25
    Z=1

  • @pythona-z7052
    @pythona-z7052 Год назад

    I have an easier way with a more comprehensive solution, and the proof is that solution:
    X= -13+2k+n
    Y=21-3k+n
    Z=14-n
    I am looking forward to a university scholarship.. Greetings

  • @kousame7shi785
    @kousame7shi785 3 года назад +2

    Z=12
    Y=5
    X=1.

  • @maddalisurendraprasadbabu9738
    @maddalisurendraprasadbabu9738 3 года назад

    1, 5, 12

  • @kousame7shi785
    @kousame7shi785 3 года назад +2

    X=1
    Y=0
    Z=14

  • @nadanaobrow9672
    @nadanaobrow9672 3 года назад +3

    Cheguei cedo hoje xd

  • @ashoksatija678
    @ashoksatija678 3 года назад

    Please read your = 12 and not 2

  • @user-engahmed
    @user-engahmed 3 года назад +1

    Put Arabic translation

    • @SyberMath
      @SyberMath  3 года назад +3

      I don't speak Arabic

    • @aashsyed1277
      @aashsyed1277 3 года назад +1

      @@SyberMath hahaha translate it

  • @sideasideb10
    @sideasideb10 10 месяцев назад

    ruclips.net/video/T_aYWFOrTmk/видео.html
    Very nice video SM. Bouncing off of your lead, we made a similar video, but we used basic properties of numbers to come up with other integer solutions.

  • @OliverFaith-sg9rb
    @OliverFaith-sg9rb 7 месяцев назад

    You talk too fast, be slowing down a bit.