@Юлия Петрова 0.(9) появляется, когда 0.(3) умножают на 3. Больше никогда так не пишут. А 0.(3) это запись 1/3. И получается казалось бы парадокс, просто как шутка без какого либо применения. на практике 1/3 так и пишут как 1/3, не переводя в десятичную дробь, либо пишут приближенное значение, смотря для каких целей.
Именно так! В любой науке правильно всегда использовать термины "верить, полагать, предполагать, считать и т. п.", в противном случае (т. е. при использовании слов а-ля "уверен, наверняка, точно, так оно и есть" и т.п.) направление, использующее точную терминологию, неверно будет считать наукой. ;)
Борис, вы прекрасный педагог. В школе ненавидел математику, поэтому поступил на истфак. В итоге к 30 годам поближе заинтересовался математикой. Такие люди как вы вдохновляют остальных на изучение чего-то нового. Спасибо!
Быть может тогда проблема ранее была не в педагогах, как ни странно, а в учениках?) Сейчас, когда вы сами захотели что-то изучить и рахзобраться, в принципе любое видео на ютубе будет по силам и по интересам, даже не от столь педагогически подкованного человека.
@@trelawney8530 До перехода в среднюю школу с математикой всё было в порядке, а потом, когда пошли разные учителя - интерес её изучать совершенно пропал.
@@Symon_Musician прекрасно понимаю и в целом согласен с вашим утверждением, что с возрастом берётся и интерес, но .. Если так задуматься? Ведь действительно с возрастом мы поменялись, у нас появился интерес, которого не было ( заметьте, его и сейчас никто не прививал, так что нечестно говорить :" просто учитель не хотел заинтересовать " ), появились умственные возможности заниматься подобным и самомнение, которое теперь заявляет " я интересуюсь, потому что это я так хочу, а вот в школе меня бы заставляли, поэтому я и не интересовался. "
Меня всегда больше смущала другая вещь: 1/3 = 0,(3). 2/3 = 0,(6). 3/3 = 1. Сам себе задал этот парадокс в 7-ом классе и всё никак и никуда. Ну, теперь вроде бы понял, хотя мозгу нужно ещё время на осознание.
Я как-то раз показал такое доказательство своему преподу по матану(0.(3)*3=0.(9)=1/3*3=1), а она сказала, что такие махинации с бесконечными числами проводить нельзя😢
Я пришел к выводу, что это косяк десятичной системы счисления. 1/3 - это рациональное число, которое мы записали в виде А делить на В, а в десятичной системе мы записать его не можем, по этому и вылезла бесконечная дробь. Еслиб эволюционно сложилось так, что у нас было бы 12 пальцев на руках и мы бы исопльзовали 12ти значную систему счисления, то проблемы бы не было и это число записывалось бы как 0,4 - т.е. ноль целых, четыре двенадцатых))))))
@@pilgrimdust7511 Здесь-то что не так? А Трушина уважаю хотя бы за то, что не стесняется признавать свои ошибки. Но, даже если Вы правы, поглупеть в мои годы вряд ли получится. Просто дальше некуда.
@@servenserov Ну, во-первых, не отчаивайтесь! поглупеть - можно всегда! А во-вторых - вот ссылка на мой комментарий ruclips.net/video/VDxWUxgaMUM/видео.html&lc=UgzkXq_IDg8ZPVrSQUF4AaABAg
@@pilgrimdust7511 Увы, ссылка открывается в андроид-приложении и найти Вас среди 600 комментов затруднительно. Не могли бы скопировать тот коммент в текущий чат, если это, конечно, актуально. Мне лично ролик не показался интересным, а тема выглядит надуманной. Есть темы получше.
Почему не принять другой вариант (который в принципе все математики и принимают): любое действительное число можно записать в виде бесконечной десятичной дроби, причем для чисел, которые можно записать в виде конечной десятичной дроби, такая запись имеет 2 формы - с (0) в конце или (9) в конце.
Genghis Khan > Почему не принять другой вариант (который в принципе все математики и принимают): любое действительное число можно записать в виде бесконечной десятичной дроби, причем для чисел, которые можно записать в виде конечной десятичной дроби, такая запись имеет 2 формы - с (0) в конце или (9) в конце. Потому что иначе не получишь столько обсуждений под видео и как следствие - раскрутку канала ) Бабло зарешало математику, называется. Как, в принципе, кто-то из философов и говорил, что если бы от математических теорем зависели бы доходы людей, то доказывались бы нужные теоремы. ) По поводу ""ошибки"" автора видео - он декларирует какой-то способ описания числа с помощью десятичной дроби, объявляет его единственно правильным, показывает, что с помощью этого способа девять в периоде ну никак не получить, а значит - барабанная дробь! - такое число и не существует вовсе. Ситуация примерно как с жопой получается - жопа есть, а слова нет )))
Как я понял, причина такая же, почему и бесконечность не является числом. Это такое понятие, бесконечная последовательность, которая записывается таким символом. Числом не является. И оперировать им, как числом, нельзя
Как я понял, десятичная дробь - это представление рационального числа, значит её можно представить в виде дроби m/n, где числа m и n целые. Например, 3.(3) = 10/3. Какая дробь соответствует числу 0.(9)?
Но если серьезно, все равно осталось ощущение недосказанности. Вроде я кое-что понял. Есть дроби 0/9, 1/9, 2/9 ... 7/9, 8/9, но дроби 9/9 нет, это уже целое число, это уже единица, это уже 1, 1+0/9, следующая целая часть. Но ощущение недосказанности все равно остаётся. Будто я понял одно конкретное значение, но не общую формулу.
Вопрос существование десятичной дроби 0,(9) вопрос работы с бесконечностью. Вы заметаете эту работу под ковер и соглашаетесь, что бесконечные дроби существуют и бесконечные суммы, даже применяете к ним правила работы. Из данных соглашений вытекает и запись 0,(9), так как по определению это обозначение суммы бесконечного ряда (как и любая бесконечная десятичная дробь) или можно сказать, что это короткая запись самого ряда. Но вдруг решаете, что надо ввести дополнительное ограничение на их существование, то есть на обозначения, которые введены изначально. Это не обще принятое соглашение, полагаю это какой местный фольклор.
Не совсем так...Бесконечности в природе не существует, как и нуля! Поэтому есть строгий запрет деления на ноль! Ноль - это отсутствие числа, причём ноль всегда не определён: мы можем ноль яблок заменить нолем груш или нолем грибов - и если мы решаем задачу про яблоки, то будет странно, когда яблоки внезапно заменятся грибами. Бесконечность же - это отсутствие предела! Тобишь бесконечные суммы - это суммы, не имеющие предела сложения. Однако же, предел бесконечных сумм - это минимальное число, которое не будет достигнуто никогда, сколько угодно мы бы не складывали! Обрати внимание, что при вычислении пределов или сумм, напрямую ноль и "бесконечность" не подставляют, за исключением очевидных простых примеров.
Запятую в бесконечной дроби можно переносить при умножении или делении на 10 потому что постоянный множитель можно выносить за знак суммы сходящегося ряда, и потом за знак предела этой суммы при числе слагаемых стремящемся к бесконечности. Первое по закону дистрибутивности а второе по свойствам сходящихся последовательностей
Это вопрос определения. Можно либо сказать, что некоторые десятичные дроби не задают никакого числа, либо сказать, что иногда разные десятичные дроби задают одно и то же число. Оба варианта приводят к мелким техническим сложностям, но ничего интересного тут не зарыто. (кроме понимания того, что десятичные дроби для теории неудобны)
Гы, Михаил, гы! И еще раз ГЫ. Это ОЧЕНЬ УДОБНО для понимания САМОЙ СУТИ ВОПРОСА. Теоретический смысл канешно у этого числа (в практическом смысле его применения) не очень велик. Но если вдуматься этого от НЕГО и не требуется. Тут нужно просто понимать, что в действительности кроме рациональности есть еще иррациональность, но все было бы действительно просто как допустим с пифагоровым "корень из два" - это число иррациональное и все тут. Но сложность проявляется в его исключительной абсолютной величине. Оно настолько мало, что уважаемый преподаватель даже объявил нам что это числа ПРОСТО НЕ СУЩЕСТВУЕТ. ЕГО НЕТ! В этом вся сложность!
@@halflife-gaming "в действительности" ни рациональности, ни иррациональности нет, это всё абстрактные конструкции. Ни разу не было, чтобы я шел по улице и вдруг увидел натуральное число. И никакой "сути вопроса" тут нет, есть мелкая путаница у людей, плохо понимающих определения (в первую очередь - школьников, которым строгое определение вещественных чисел вообще никто не рассказывал).
1/3+1/3+1/3=1, а не 0,(9) Но если взять систему вложенных отрезков, где a1=0, b1=1, an=(an+bn)/2(для удобства делим на 2, вместо нее можно взять любое число), b1=b2=b3=.....=bn..=1. Если бы существовал 0,(9) то мы взяли бы a=am=0.(9) и продолжали бы еще, еще и еще до бесконечности, что противоречит теореме о вложенных отрезках, где общая точка 1. Если в моем доказательстве есть ошибки напишите плиз
Есть вариант попроще, в соседнем трэде применили на троле. Но он был настолько глуп, что даже не посчитал. Смотрите, если 0.(9) != 1, значит существует хотя бы одно (чисто для смеха - одно) число между ними. => Найдём такое число! (0.(9) + 1)/2. Когда посчитаете - удивитесь ;-) Но на самом деле числа 0.(9) не существует 🤣🤣🤣
Оказывается и Трушин может быть неправ, хоть он и ТРУшин :) А именно, неправ в высказывании "... по большому счету это не число." Ошибка заключается в том, что за единственный способ получения бесконечной десятичной дроби принимается способ деления целого числа на 10^n и последовательной записи остатков. Но число можно получить и другим способом. Например умножением бесконечной десятичной дроби на целое число. Например, 0,(1)*2=0,(2). Возникнет, конечно, небольшая сложность, когда умножение очередного знака после запятой на целое число даст результат больше 9, но она вполне решается, если разбить бесконечную десятичную дробь на бесконечную сумму конечных десятичных дробей. Например, 0,(3)*4=0,333*4+0,000333*4+ ... +0,333*10^(-3*(n-1))+... = 1,332+0,001332+ ... = 1,(3) Так что операция умножения бесконечной десятичной дроби на целое число вполне себе правомерна, и 0,(3)*3=0,(9). И, главное, сам доказал, разными способами, что это число равно 1, и тут на тебе - сравнил его с 0/0, которое действительно не существует. Аккуратнее, Борис :)
по твоей логике, число 0,(9) можно умножить на 2, тогда получается 1,(9)8 ( или 1,(9), ведь в твоём комментарии у тебя 0,(3) * 4 это 1,(3) без двойки в конце, тогда ни о каком 1 = 0,(9) и речи идти не может, ведь 1*2 = 2, ну а если не так, то 1,(9)8 ) в таком случае, получается, что это число не может равняться двум, да и вообще все, кто доказывают, что 1 = 0,(9) отрицают запись 1,(9)8 , так как тогда они будут вынуждены признать существование бесконечно малого числа, что, в свою очередь, будет доказывать, что 1 больше 0,(9) на бесконечно малое число.
@@searine-t3k У меня вопрос к вашей фразе: "... 1,(3) без двойки в конце ..." Ну, или к записи "1,(9)8". Что это значит? На каком месте стоит восьмерка? Если на бесконечном, то все в порядке ;) Пусть там хоть единица стоит, хоть ноль, все равно это число равно двум. И, да, бесконечно малое число не существует. Ну, или если вы захотите такое число ввести, то увидите, что это просто 0. Есть бесконечно малые (и бесконечно большие), но это не числа.
@@Vovkq вообще, я вёл к тому, что числа 0,(3) не существует, оно получилось, когда попытались 1 поделить на 3, сначала 1/3 = 0, потом делить уже будем 10 на 3,бесконечно получая 1 в остатке, добавляя ноль, и опять деля 10 на 3. Если этот процесс происходит бесконечно, то и никакого числа получиться не может, ведь если это число, то существует такой момент, в который мы остановились, если это не число, то можно назвать это процессом, или просто приближенным 1/3, так как 1 нельзя поделить на 3 в десятичной системе.
@@searine-t3k Прошу заметить, на мой вопрос вы не ответили. Но, ладно. Число 0,(3) существует и оно равно 1/3, что легко доказывается. В вашем рассуждении есть ошибка: "Если этот процесс происходит бесконечно(!), то и никакого числа получиться не может, ведь если это число, то существует такой момент, в который мы остановились(!)". Если мы остановились, то процесс не происходит бесконечно. Но, как вы правильно сказали, процесс записи остатков остановиться не может, потому что каждый раз остаток получается. Значит мы не остановились. Да, ручками записать такую десятичную дробь за конечное время невозможно, но нашелся выход: взяли и написали бесконечно повторяющуюся последовать цифр в скобочках и назвали это (в периоде). Делая такую запись, мы подразумеваем: "Мы потратили бесконечное время и записали бесконечное количество троек после запятой." И еще одно непонятное высказывание: "... 1 нельзя поделить на 3 в десятичной системе". Частное двух чисел не зависит от того в какой системе мы его записываете. В троичной системе это число будет записано как 0,1, в десятичной - 0,(3). Но это одно и то же число, которое равно 1/3. Отличается только запись.
@@Vovkq 1/3 - это просто деление число на число. Если бы 1/3 равнялась 0,(3) Никто бы не записывал это как 1/3, вед ь какой смысл записывать число в виде дроби, если его спокойно можно привести к десятичной дроби или целому числу, это не так важно
я купил единичную плитку метр на метр и отпилил от нее 1/10, а потом от этого кусочка еще 1/10 и так далее до бесконечности, остались куски 9/10, 9/100, 9/1000, 9/10000 и так далее, любой может повторить🫠 а потом я их сложил: 0.9+0.09+0.009+0.0009+...=0.(9) сложилось обратно в 1, все делал в коробке, никакие куски не потерялись и вес не изменился, обратно я получил ту же самую плитку, ой Борис, кто-то тут не прав😉
@@olegshyshkov4740 Давать можно и порционно. Но вот честно говорить, мол, эта вещь существует, но мы пока ее не рассматриваем, ибо сложно. В школах именно, что даже не упоминают многие факты, даже обзорно, что никакого смысла не имеет.
Если рассматривать множество гиперреальных чисел, то единицу после бесконечности нулей можно считать бесконечно малым числом. 1-0,(9)=[0,(0)1] формально. ru.wikipedia.org/wiki/0,(9)
Объясню, вероятно, чуть менее сложно, без использования мат. операций. 0,(9) - число, бесконечно стремящиеся к 1. Следовательно, разница между ними будет бесконечно эфемерной.
Что значит и почему "оно стремится к 1", Разве оно не стоит на числовой оси, в конкретном месте? И какая будет разница между 0.(9) и 1, если у него нету конца? 0.(9) это бесконечные девятки, следовательно между числом 0.(9) и 1 ничего не стоит, следовательно они равны.
Фихтенгольц в первом томе пишет что в один из моментов наше целое число при таком десятичном делении в один из моментов совпадет с одним из концов промежутка, в который мы его заключаем, левым или правым - по нашему произволу, и приводит, в отличие от случая с иррациональными числами, нестрогое неравенство. Так что вроде бы с этой девяткой в периоде из этих соображений проблем нет
И в принципе пишет, что любое целое число может быть представлено в виде периодической десятичной дроби слева или справа, с нулями или девятками в периоде соответственно
Нам давали формулу, по которой можно бесконечную периодическую десятичную дробь представить в виде дроби. Мы ее даже доказывали, только в 6 классе это доказательство было не очень понятным, поэтому формулу пришлось просто выучить, ну и как следствие, никто ничего не помнит сейчас... Когда увидела название подумала:"Как кому-то в голову могло придти, что 0,9999999... может каким-то образом равняться 1? Есть же формула!" А потом почитала, что пишут, что 1/3+2/3=3/3, и вот здесь стало страшно. А формулу все равно не помню:)
0.(3)=1/3 -> 1/3+1/3=0.(3)+0.(3) -> 0.(6)=2/3 -> 1/3+1/3+1/3=0.(9)=3/3. Это при условии что мы можем складывать периоды 0.(3) +0.(3)мы же можем складывать десятые, сотые, тысячные..... И будет получаться 0.(6) если взять это за истину то 0.(9) =1 то это правда)
@@_mrix_534попробуйте познаково сложить 0,(6) и 0,(3). 6 десятых и 3 десятых, 6 сотых и 3 сотых, 6 тысячных и 3 тысячных и так далее вперёд в бесконечность. ))) ВНЕЗАПНО у вас слева от запятой единички никак не получится, а будет только бесконечный ряд (строка, строй) девяток справа или именно 0,(9).
@@_mrix_534а в вашем примере ещё интереснее получается, потому что, если внимательно посчитать, то 0,(7)+0,(7) это не только не 0,(14), но даже не 1,(4), а... ... ...барабанная дробь... ... ...фанфары... ... 1,(5)
По поводу 0/0 = 1: равенство верное в том смысле, что справа может быть вообще любое число Х (что легко проверяется умножением: 0 = Х*0), в том числе и 1; другое дело, что хотя операция 0/0 выполнима, но ее результат не определен и потому она бесполезна.
Но 0.(0)1 также не существует. Периодические существующие дроби можно представить в виде деления натуральных(а может и целых, ну тогда кроме нуля) чисел. Например, 0.(3) существует, это число 1/3 (одна треть) и как раз такие числа можно вывести двумя способами, которые приведены в начале видео. А 0,(9) нельзя представить в виде деления теми двумя способами, значит его и не существует! 0,(0)1 вообще даже начало алгоритма не работает, так что его подавно нет!
@@Борисыч-в9м , в общем-то доказать логически, что 0.(9)=1 легко, если доказать, что 1/9=0.(1) (просто умножаем на 9 обе части и получаем как раз 1=0.(9). Переносим влево 0.(9) и получаем 1-0.(9)=0 или 0.(0)1=0 (можно доказать что 0.(0)2=0 рассмотрев 2=0.(9)+0.(9) Но математически это доказать бессмысленно. (Больше скажу, периодом наподобие 0.(1) и 0.(12) может быть лишь дробь x/((10^n)-1), где x (натуральный) - то, что мы хотим получить "в скобках", n - натуральное число, показывающее число знаков в периоде (x всегда меньше n, если больше то делаем дробь суммой натурального числа и правильной дроби). В целом тема интересная, можно даже поискать периоды в других системах исчисления (в двоичной 0.(1) = 1) но периоды в математике бессмысленны, так как они лишь отображение дробей в десятичных (в других системах исчисления не десятичных) дробях.
Вы прекрасно всё объясняете. Хоть я и смотрю недавно ваш канал, но должен отметить, что у вас дар на пальцах рассказывать о математике, весьма полезные ваши видео не только учащимся выпускных классов, но и людям, которые в силу каких-либо причин вспоминают математику.
Если уж проводить геометрические аналогии, то давайте рассмотрим точку, прислоненную к точке 1 слева. Что такое точка, прислененная слева? Это такая точка, которая при рассмотрении каждого отвечающего интервала раз за разом до бесконечности будет попадать в девятую его часть. А теперь доказывайте, что такой точки не существует :))
@@5ere9a Смотрите определение бесконечной периодической дроби. Там прямо сказано, что любое рациональное число p/q может быть представлено десятичным дробным с периодической частью. Если есть период, то это как бэ намекает, что за ним стоит рациональное число. Причем точное. Поэтому 0.(9) это другой способ записи 1. Это люди так сами сказали, что давайте для рационального числа p/q в десятичной форме дроби введем период, и будем его писать в скобочках. Это как сказать, что давайте 1 в дробном представлении писать как 1/1, а потом начнется спор а всегда ли 1 = 1/1.
Я думаю это так, потому что какую-нибудь дробь(например 1/3) нельзя представить в десятичной системе, даже 0.(3) не будет являться 1/3, ведь это лишь число, максимально схожее с 1/3, поправьте если ошибся
правильно он просто перекрутился придумывая что то сложное . Если так подумать он дал одно объяснение почему он прав но это 1 утверждение которое даже звучит не убедительно если напишите в Википедии даны несколько точных решений этого вопроса
@@MrRocert напиши в посиковик девять в периоде равен 1 и выйдет сайт на Википедии и поймёшь насколько ты умный и видишь дальше носа . Там чуть ли не десять нормальных доказательств .
Подскажете, как решать задачу 1 в гл.2 $1 Зорича? Формулировка as follows: Покажите, что число x из R рационально тогда и только тогда, когда его запись в любой q-ичной системе счисления периодична, т.е., начиная с некоторого разряда, состоит из периодически повторяющейся группы цифр.
У меня есть вопросы. Вы утверждаете что 0.(9) это не 1. Но сами привели 2 доказательства того что 0.(9)=1, и не указали где же там ошибка. Во вторых с чего вы решили , что 0.(9) не существует? Вы можете это доказать ?
Не знаю каким определением вы руководствуетесь и с чего вы взяли что любое действительное число задается десятичной дробью однозначно.Ни в одном определении бесконечной десятичной дроби нет оговорок насчет цифры 9 в периоде. В периоде может быть любое десятичное число. Возьмите хоть определение бесконечной десятичной периодической дроби из той же википедии (или вы не считаете этот источник достаточно авторитетным? ) Далее цитата по поводу неоднозначности представления: Всякое действительное число вида a =p/10^s, где p - целое, s - целое неотрицательное, может быть представлено в виде десятичной дроби более чем одним способом. Если a != 0, то оно может быть представлено как в виде конечной десятичной дроби, а также бесконечной дроби, полученной приписыванием нулей в конец после запятой, так и в виде бесконечной дроби, оканчивающейся на 999...
Есть разные подходы, но вполне естественно в качестве определения бесконечной десятичной дроби брать то, что в википедии (ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%81%D1%8F%D1%82%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D0%B4%D1%80%D0%BE%D0%B1%D1%8C) идет в разделе "Алгоритм разложения числа в десятичную дробь". Этот алгоритм однозначно сопоставляет каждому числу десятичную дробь, и по этому алгоритму 0,(9) получиться не может.
Как мы все хорошо помним ещё со школьных времён (из учебников Колмогорова, например), отрицательные действительные числа можно записывать со знаком "минус" над целой частью: −1.25 = 2̅.75, т.к. −2 + 0.75 = −1.25 (удобно при операциях с десятичными логарифмами). Тогда, если мы считаем 0.999... _допустимым_ представлением действительного числа 1.0 в виде бесконечной десятичной дроби, мы, по этой же логике, должны считать 1̅.999... допустимым представлением действительного числа 0.0
Существует в виде определения, в виде суммы бесконечного ряда, в виде корня какого-нибудь уравнения. В виде конечной записи в системе счисления с рациональным основанием - нет.
Если уж применять обычные операции к периодическим числам типа 0.(9), то очевидно, что 0.(9) < 1, так как первая значащая цифра у 0.(9) ноль, а у 1-цы - один. Как бы получается, что 0.(9) меньше 1. Вопрос на сколько меньше)) Разница по идее есть, но она не конечна. Чтобы её выразить, на помощь приходят пределы. 0.(9) - это предел, стремящийся к единице слева. И получается, есть 1-ца и предел, который к ней слева стремится. А значит разница между ними стремится к нулю. В каких-то случаях этой разницей можно пренебречь, и тогда 1 = 0.(9). Но в некоторых случаях она может оказаться ощутимой: 1 / (1 - 0.(9)) стремится к бесконечности, а 1 / (1 - 1) - попросту невозможная операция.
Всё просто. В математике есть числа х+0 и х-0, то есть вычисление функции для х справа или слева. Число 0,(9) является пределом функции 0.9+0.09+0.009... и равняется (1-0) то есть одному слева
Если вы правы, то сможете привести число, хотя бы одно, которое в аккурат находится между 0.(9) и 1.0. Но не функцию, как нас пытаются ввести в заблуждение, а число
Немного не понял переход. "мы не запишем единицу как 0.9 и что-то ещё после запятой, так как 1, не находится между двумя отметинами, следовательно 0.9 не существует. " Или я не так понял рассуждение?
0, (9) - указание на то, где искать число. но мы его не можем найти, потому что по указателю надо пройти бесконечное количество раз. точно как и число, которое нужно добавить, чтоб получить 1. 0,(0)1 - прежде чем добраться до единички, придётся написать бесконечное количество нолей.
Поняли правильно, но не до конца. Это все потому что оне (обяъснение) не полное и обрывается на "ЧИСЛА НЕТ". Но в принципе, этого не требуется в полноты картинки...Вообще преподаватель тут как бы предлагает ученику САМОМУ порассуждать некоторое время на бумаге, оставляя его как бы "НИ С ЧЕМ" в кармане, но на то она и она что бы думать...
@@nikolayparygin610 в любом иррациональном числе "по указателю надо пройти бесконечное количество раз", так что аргумент не канает, и Виктор прав: вывод "числа не существует" был взят с потолка
Видимо не существует без предельного перехода. Предельный переход все меняет и превращает 0,(9) в 1. Сам процесс написания девяток бесконечен и трудно сказать как мы понимаем здесь бесконечность, потенциально или актуально.
@@evgtro8727 математика без предельного перехода, или без операции сложения, или без цифры ноль - это уже не математика. Так что сама фраза "без чего либо" не имеет смысла. Далее, возьмем к примеру число пи, или любое другое не алгебраическое иррациональное число. Никакого предельного перехода в них нет, из этого же не следует, что этих чисел не существует
Нельзя проводить математические действия с числами в периоде. Надо переводить их в дробь, иначе результат будет не корректным,как не с существующем 9 в периоде, который округляется или равен до целого.
Все дело в десятичности и отсутствии некоторых цифр, в данном случае 3, как делителя десятки, это и приводит к костылям типо того, что 1/3 = 0.(3) и 3х0.(3)=1
По философии Лейбница , эта разница между 1 и 0. (9) является монадой , т.е. духовной частицей. И если отделить мир материальный от мира духовного , то монада не повлияет на вычисления сделанные с помощью формул. Таким образом в доказательствах равенства 1 и 0. (9) мы наблюдаем как математика описывает мир материальный, являясь частью и духовного мира.
Формально говоря, 0/0 -- в том числе и 1 (по определению деления). Проверяем: 1*0 = 0 -- всё правильно. (Но это верно для любого числа, поэтому договорились так не делать.)
Вообще, можно определять десятичную бдд просто как последовательность цифр, а "значение" бдд как точную верхнюю грань последовательности конечных дробей и говорить, что бдд 0,(9) и 1,(0) имеют одинаковые значения
@@trushinbv если существует доказательство того, что любое действительное число можно показать на действительной прямой, то тогда это тривиально же Находим для x из R [x], рассматриваем единичный ОТРЕЗОК с целыми концами, содержащий x(объединение всех таких является численной прямой, то есть хотя бы один содержит в себе х), далее разбиваем наш отрезок на 10 и выбираем любой из отрезков, которому принадлежит x, что в принципе всегда возможно, т к объединение отрезков являет собой отрезок, на котором точно лежит x. так можно бесконечно продолжать запись числа, и можно тогда утверждать, что любой записи соответствует хотя бы одна точка на числовой прямой (у нас тут лемма Холла для бесконечного количества отрезков, которые являются по себе выпуклыми 1-мерными компактами, попарно пересекающимися). Если же их две или больше, то между любыми двумя есть расстояние, большее нуля, а значит они рано или поздно не будут покрыты одним из отрезков. Т.о. любой записи соответствует ровно одно число(точка на прямой) а любому числу 1 либо 2 записи
До этого видео был полностью уверен, что 0.(9) и 1 конечно же разные числа, но: а является ли 0.(9) иррациональным числом? наверное нет, потому что: Иррациональные числа - это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби. А является ли 0,(9) рациональным числом? навероне нет, потому что: Рациональные числа можно представить обыкновенной дробью. 0,(1) можно представить обыкновенной дробью, это 1/9. Так в какое множество оно входит? Не знаю, но в какое-то должно входить, если оно (число) существует. А оно существует, потому что мы его можем записать, и даже представить себе на примере отрезков, как показал Борис Трушин. Доказательств, свидетельствующих, что 0.(9)=1 предостаточно, опровержений нет. Произведите любое математическое действие с 0,(9) и поймете, что 0,(9) ведет себя как 1. Доказательство неравенства, приведенное в данном видео носит какой-то умозрительный характер, из оперы "...вы что, на шаре живёте? вы живёте на плоскости..." Или нужно приравнять 0,(9) к единице, или создать новое множество чисел, которые будут представлены суммой рациональных чисел, пусть даже это множество от рациональных будет отличаться только одним числом 0,(9).
Кстати, есть ещё одно лаконичное доказательство, что 0.(9) равно 1. Для этого нужно взять квадрат или прямоугольник(на самом деле можно взять любую фигуру, просто на примере квадрата будет более наглядно) и пусть он будет 1x1, то есть площадь равна 1. Делим его на 2 части: первая часть занимает 1/10 объёма, вторая остальной объём - 9/10. Первую часть делим по тому же принципу, и так далее. Площадь квадрата равна сумме площади входящих в неё фигур, то есть 0.9 +0.09+0.009..и так далее, что и должно быть равно 1 в итоге, так как площадь квадрата не изменялась, и постоянно равна была 1.
Но 0.9+0.09+... это сумма площадей не всех фигур. Доказательство им не является. Доказать, что 0,(9)=1 можно только арифметически, считая, что 0,(9) это число. Но эта десятичная дробь им не является
Кто там теорему Ферма доказал? Уайлс с Перельманом? Вот приносят они доказательство, а им говорят: "Да погодите вы с Ферма, мы тут не можем понять, равны 0,(9) и 1 или нет". (дальше должен быть звук, как в конце Ералаша. Пада-бада-па пиу!)
Это одна из форм записи любого действительного числа, но складывать их не так просто, особенно когда они не периодические. А перемножать так вообще страшно ) Просто нужно учитывать, что если получается (9), то нужно предыдущую цифру увеличить на 1, а период отбросить.
Ок. Просто это правило "если получается (9), ..." тоже может вызвать вопрос - а почему? Лучший ответ, кмк, - по определению. И к тому же, если не считать 0,(9) числом (а вместе с ним и много других бесконечных дробей), то получается, что избавляясь от "дырок" на числовой оси, мы получаем "дырки" в множестве десятичных дробей. Некрасиво. )
У многих возникает путаница в силу непонимания объекта разбора фундаментально. Помогу немного в простой форме. Что исключает вычурные доказательства среди математиков и физиков. 0,(9), в целом, это небольшое число. Меньше единицы. Каждый элемент после запятой тем меньше, чем дальше. Что вызывает ощущение не просто сильного приближения к 1. Введём эквивалент этому числу числом без запятой, где тот же принцип соразмерности эквивалентен. Уберём и склонность мозга к округлениям, с интуитивным смещением и неточностью формулах. Берём 9. И 9999..... - (9). Но единица в конце, такая же соразмерная, выглядит совсем по-другому. Хотя она АБСОЛЮТНО такая же. Таже соразмерность погрешности, если мы пользуемся погрешностью округляя и применяя это как-то. Помог выбраться Борису из несуществования чисел среди целых и немного странного доказательства. Путём нахождения эквивалента в них. Используется фундаментальное понятие соразмерности, которое более фундаментально чем число и число является ЕГО СЛЕДСТВИЕМ. Обладая брешью в знаниях изначально, мы начинаем путаться и над фундаментом растут пробелы и трещины. Число есть нечто отдельное от остального и соразмерное части. Это его физическая природа. Именно закономерность соразмерности и есть число. Иначе это недетерминированная масса чего-либо. Число это нечто определённое исключительно в отношении чего-то вне. Без этого числа нет. Соотношение. Соразмерность. Что и есть фундаментальная физическая суть математики. Присутствующая объективно как любая физика. Буквально. И более. Форма чисел соответствует природе соотношений, которая может меняться. Любые объекты мира соотносятся друг к другу. Не только количественно. Но оставим физику и химию. Само понимание того что есть несколько объектов основано на их присутствии и законах взаимодействия. В любой и идеальной системе. И вне объекта наблюдения, который лишь использует законы. Если вы берёте часть чего-то, в детерминированых долях, эквивалентах, вы предопределяете и остальное, доли внутри на основании соразмерностей между ними. Если этого нет - то это аморфная суть. Появилась соразмерность - появилось число и остальное. Составляющие числа. Соразмерность обладающая упорядоченостью породила их. Соразмерность присутствует физически, химически и как угодно, являясь более фундаментальным породителем числа. Именно этот принцип с использованием фундаментальных знаний я и использовал. Как в примере с вычурными решениями математиков и физиков по отношению к точкам внутри выпуклого многоугольника и вопроса о высоте. Есть более сложные принципы соразмерности чем численные. Как объект и остальное, предопределяющие пречисла. Или операторы. '+', '-' и прочие. Которые более фундаментальны чем числа и предопределяют их суть и границы. Что так просто и логично. Стена дома формируется силами, колебаниями, игрой меньше и больше детерминированного спектра. Да, она собрана из частей при разделе объекта себя и внешнего мира, где разделение предполагает возникновение или закономерностей или чего угодно другого между. На основании чего стена собирается и на основании каких колебаний, сил, разных операторов, динамики, существует если те достаточно закономерны, равновесны и так далее. Соответствуя соразмерности. КАК И СУЩЕСТВУЕТ ЛЮБОЕ ЧИСЛО. Я ввёл его физический эквивалент буквально. На примере стены. Упрощая изменение. Так числа и используются в данной привязке уже к другим объектам сформированным с испольщованием соразмерностей и не только. - Теперь подойдём к большой стене где нет одного кирпича. Пусть она бесконечна. Равна ли она той где все кирпичи есть? Ответ очевиден. Как и разница В МИРИАДАХ вещей сопряжённых с наличием или отсутствием этого кирпича в стене. Борис, и Вам, и гениальным ребятам типа Перельмана, зачастую бегущим слишком быстро, нужно более просто использовать уже развитый интеллект исключая пробелы. - Ну и как появились числа и математика, и совсем неслучайно, поверьте - я немного приоткрыл дверь к этой интереснейшей теме. Я часто люблю поиграть с границами и даже ошибочными допущениями не только исходя из научного интереса пролегающего в этой теме... Вы найдёте много подобных примеров уже получая ответ на то с чем они связаны с учётом неблагочестивости многих использующих и далеко не Храм Математики. С использованием того что мозг любого живого существа использует соразмерности для существования, создания себя, изменения ФУНДАМЕНТАЛЬНО. 😏 Форма извилин имеет более простые определения и это лишь часть, как и часть смысла нейронных сетей первопричинная, первоздаанная цель которых - определение разнородных соразмерностей и детерминация закономерностей для комфортной жизни сущности в целом... Я приятно удивлю Маска и прочих этим маленьким комментом с уровнем знаний демонстрирующим отличие в порядок ещё к тому порядку который уже есть между нами... Хищность, Борис, это часть фундаментальных соразмерностей. Она связана с возможностью мозга не только использовать закономерности изучая, а создавать и менять их. Иногда в огромных масштабах...😏🤫 В разных целях. Целительных и наоборот... И это лишь часть... С НАСТУПИВШИМИ ПРАЗДНИКАМИ И ОТМЕННОГО ЗДОРОВЬЯ! - С настроением в придачу. 😏 Особенно таким как Гриша. Первоклашки, как Эйнштейн, могут завести далеко, напялив имидж знатоков. 😏 А простых и честных парней ВСЁ ПРОСТО! - 😊
Математика была создана довольно быстро и просто. И также просто и быстро меняется. С некоторыми задержками в силу некоторых фундаментальных изменений меняющих не только мозг... 😏😂😂😂😂🤣🤣🤣🤣 Это отдельная ТРЕПЕТНАЯ тема... 😉🤫 Привет и красоткам! 🤣🤣🤣🤣😂😂😂😂
я могу поместить между твоей ровно одной "материальной" точкой, и единицей бесконечное количество количество "Материальных точек" Да и что значит материальная точка? Точка размеров так-то не имеет
Если число при зуме точно попало на какое-то число, то вы запрещаете писать дополнительные десятичные знаки. Стало быть не существует числа 1,0 (одна целая ноль десятых). Получается такая запись некорректна или как?
Утверждение "если известный нам алгоритм не приводит к нужному числу, то этого числа не существует" неверно. Нет, не значит. Даже в рамках конструктивной математики следовало бы утверждать для этого "нет ни одного алгоритма, приводящего к данному числу", а не то утверждение, которое прозвучало. А брать в качестве определение бесконечной десятичной дроби объяснение для пятиклассников - это не математика. Есть же нормальные определения. Тем более для периодических дробей, который сводятся всегда к рациональным числам тут даже не надо применять никакого знания про вещественный числа.
Опа, это "не математика". А о каком алгоритме идет речь? Не об алгоритме ли записи числа? Или речь идет об алгоритме поиска числа 0,0(1) на прямой? На мой взгляд, высказывать предположение о том, что "использование такого-то определения есть не математика" в силу категоричности выводов такого использования по поводу более изощренных определений, есть факт некорректной манипуляции терминами.
Можно ли рассуждать следующим образом. Любое действительное число есть бесконечная периодическая или непериодическая десятичная дробь. Рассмотрим действительные числа меньшие 1 и не равные 0.(9) тогда рано или поздно в каком-то десятичной разряде будет цифра, отличная от 9. Получается, что 0.(9) больше любого такого действительного числа. Тогда получается, что между числом 0.(9) и 1 не существует других действительных чисел. А так как множество действительных чисел непрерывно, такое может быть лишь в случае, если 1 и 0.(9) одно и то же действительное число.
"тогда рано или поздно в каком-то десятичном разряде будет цифра, отличная от 9" - это ошибочное предположение. Видите ли, бесконечность - это много. Очень много. Более того, бесконечность - это даже не число. Поэтому понятия "рано или поздно" в контексте бесконечности неприменимы, поскольку они предполагают конечность бесконечности, а это абсурд. Такого не произойдет никогда.
Может я не совсем правильно понял объяснение,но мне кажется числа 0,(9) нет, так как оно нарушает аксиоматику вещественных чисел так как нельзя найти число которое больше 0,(9) и меньше 1
"Может я не совсем правильно понял объяснение,но мне кажется числа 0,(9) нет" По определению, приведенному в видео, такое обозначение не является правильным ни для какого вещественного числа. По другим, более интуитивно-понятным определениям, это обозначение ссылается на число 1. "так как оно нарушает аксиоматику вещественных чисел" Не нарушает. "так как нельзя найти число которое больше 0,(9) и меньше 1" Это означает, что 0,(9) = 1. Иными словами, десятичная дробь "0,(9)" ссылается на то же число, на которое ссылается десятичная дробь "1".
@@thetaomegathetaпусть f(x) = [x] - функция целой части действительного числа. Рассмотрим последовательность: x₁ = 0,9 x₂ = 0,99, … xₙ = 0,99…9 - n девяток. Очевидно, что для любого n: f(xₙ) = 0 - имеем стационарную последовательность, все члены которой равны нулю, поэтому при n → ∞ f(xₙ) → 0, или же [0,(9)] = 0. Если же мы полагаем, что 0,(9) = 1, то [0,(9)] = [1] = 1. Прокомментируйте, пожалуйста
@@stasessiya 'поэтому при n → ∞ f(xₙ) → 0, или же [0,(9)] = 0' Из того, что f(x_n)->0 при n->inf не следует, что [0,(9)] = 0. Мы здесь не с непрерывной функцией работаем. Для того, чтобы гарантировать истинность тождества lim(f(x)) as x->x_0 = f(x_0), функция f должна быть непрерывной. EDIT: функция f должна быть непрерывной в точке x_0, если выражаться точнее.
Я так понял, что числа 0,(9) нет, потому что его нельзя найти за конечное число итераций, приближая численную прямую. Но ведь тогда числа пи тоже нет, потому что его тоже нельзя так найти
Периодические десятичные дроби существуют. Как результат деления обыкновенных дробей. Пример: 0.(3) есть тождество с 1/3. И это рациональное число. Числа 0.(9) не существует потому, что не существует такой обыкновенной дроби, результатом деления которой была бы такая бесконечная периодическая десятичная дробь. Логика примерно такая
Если бесконечное десятичное разложение периодично, то это разложение рационального числа 1 рациональное число Поэтому кажется, что 0.(9) это просто другое представление единички, как, например, 1/3=0.(3) Разве нет?
@@DeMastri боже мой женщина, что ты несёшь? 0,(9) - это бесконечно близкое к 1 число, поэтому оно равно одному. С каждым прибавлением девятки к числу 0,999...9 мы становимся ближе, и пределом этой последовательности является число, большее любого, принадлежащего ей, то есть большее любого числа, меньшего единицы, т к для любого числа меньшего 1 есть число 1-1/10^a, которое больше него, а оно в свою очередь меньше 0,(9). Таким образом, число больше любого, меньшего единицы, а значит оно не меньше единицы
@@DeMastri Если 0.(9) не равно 1, то вы несомненно сможете указать любое, сколь угодно малое число, которое находится между 0.(9) и 1. Правильно? Укажите такое число и вы докажете своё утверждение
Надо четко определить что есть число, а что не число. Если число - это количество чего-либо, то бесконечная дробь - не число, т.к. в реальном мире нет объектов, количество которых ими измеряется. Бесконечные дроби - это результаты сравнения чего-то с чем-то, применение термина "число" к десятичной дроби создает путаницу в голове. Но в теории чисел они тоже называются числами, хотя это совершенно другая хрень.
При делении отрезка на 10 равных частей и определении месторасположения точки Вы не раскрываете понятие бесконечности. Из-за этого и возникают недоразумения. Если единица - число, то бесконечный период - это процесс. И результатом процесса 0,(9) логичным образом является 1. 0,(9) и 1 - две различные записи одного и того же числа. Равно как 2/2 и 1. Говорить о том, что записать 0,(9) можно, но такого числа не существует, наверное, немного неправильно. 0,(9) существует и в точности равно 1.
Пожалуй числа 0.(9) действительно нет, у меня есть размышления по этому поводу, продолжающие мысль изложенную в ролике. Принципе, десятичная запись числа, как и десятичная бесконечная дробь, это лишь форма записи рациональных чисел. Но форма не должна быть первее смысла, в математике уж точно. Рациональное число задается отношением двух целых чисел: а/b и принципе возможность записать какое то число в виде бесконечной десятичной дроби не говорит о том, что такое число есть. Так вот, если мы хотим получить какое то десятичной число, которое будет иметь n-ый период, например 4, мы должны поделить это число на четыре девятки: 1234/9999 = 0.(1234). Данный факт несложно доказать. Но из этого правила явно видно, что желание получить число 0.(9) не приведет к желаемому результату, потому что 9/9 = 1. Так что 0.(9) не равно 1, такого числа просто нет
@@АндрейП-з8ц Нет такой обыкновенной дроби, результатом которой будет число 0.(9). Впрочем, возможно комментатор ошибся и вы сможете указать такую обыкновенную дробь
Руслан, как я вас понимаю...если бы евклид знал что его алгоритм будет эффективно использоваться для подобно доказательства он бы улыбнулся себе в бороду и сказал "О, боги, есть правда на Земле!"
Какой-то тотальный бред произошел в конце. Автор "придумал" алгоритм для поиска десятичной записи числа. Ни слова об существовании и единственности, зато влепил вывод "раз мы не можем получить с помощью этого алгоритма 0.(9), значит число не существует", который может быть сделан лишь при условии существования и единственности. Существование следует из рассуждений автора, а единственность он же и опроверг в первой части ролика. Если быть откровенным - не ожидал от вас настолько грубой логической ошибки
Говорить что числа 0,(9) не существует не верно! Вас же дети могут слушать и запомнят именно так! На самом деле математики договорились считать, что у чисел вида n/2^k (где n, k - целые) есть ровно 2 десятичные записи (см. например Лекции по математическому анализу Архипов, Садовничий, Чубариков, стр. 18). И эти записи равноправны, т. е. число один в десятичном виде может быть записано как 1 или как 0,(9). Дробь 1/4 может быть записана в десятичном виде двумя способами: 0,25 и 0,24(9).
Нет, уважаемый Евгений, все в порядке, тут именно подводится логически к мысли о том, что проблема как раз в поиске точного значение числа 0,(9), прием поиск производится путем поиска точки на прямой. А найти ее нет возможности, поэтому "НЕТ ЧИСЛА 0,(9)". Но опять это только как бы логически обозначено . Все намного сложнее...
Я так подозреваю, что числа 0,(9) не существует только в десятичной системе счисления... А вот в НЕХ-числах у 0,(9) должны быть такие же права на существование как и у 0,(1...8). И, заметьте - это одно и то же число! Как 0,(9) может не существовать в десятичной системе и существовать в шестнадцатеричной?
Кажется, что десятичные дроби были до того, как я ушёл учиться в математический класс университетской гимназии. И тогда всё было интуитивно якобы "понятно". Если сейчас у меня спросить, что такое 0.a1a2a3..., где an -- бесконечная последовательность целых чисел из [0; 9], то я смело напишу сумму ряда, и не буду оговариваться, что в этой последовательности сколь угодно далеко должны присутствовать цифры, отличные от 9. Думаю, легко смогу доказать, что она сходится, и девятки на конце мне не помешают. Но вот вопрос, почему для всякого вещественного числа найдется такая последовательность an, меня уже вынудит дробить отрезки. И тут-то мы заметим, что я предложил нифига не биективное отображение, в котором последовательности 1,0,0,... и 0,9,9,... отображаются в одно и то же вещественное число.
Я понимаю, что википедия -- тот ещё базис, но её показания сходятся с моими: десятичная дробь -- это запись вещественного числа в виде последовательности, число вычисляется как сумма соответствующего ряда. Отдельно есть алгоритм, как построить последовательность по числу. Отдельно есть оговорка, что рациональные, у которых лишь двойки и пятёрки в знаменателе, имеют более одного преставления. Кто, всё-таки курица, а кто -- яйцо? Можно ли говорить, что 0,(9) -- запрещено определением десятичных дробей?
@@leptosomic Причем здесь доказательства? Я говорю о второй части видео с рассуждением о не существовании числа 0,(9). Тут все в договоренностях как понимать число.
В начале были натуральные числа, затем целые, потом рациональные, потом действительные, потом комплексные, теперь не существующие!! В переводе на английский тут красивая игра слов!
Тут вообще все сильно зависит от аксиоматики. Важный момент, что исходная задач эквивалентна тому, что требуется доказать, что lim(A + o(n))=A -- этот предел в точности равен A, а не бесконечно стремится или находится в какой-то бесконечно близкой окрестности от A. (Именно доказательство того, что предел точно равен) Без этого доказательства первые 2 доказательства достаточно бессмысленны Во-первых доказательство на основе ряда должно быть на основе работы с частичными суммами, после которого должен быть предельный переход. Но в предельном переходе мы снова получим изначальное lim(A + o(n))=A Если мы идём от прогрессии, то там также получим предельный переход и тот же самый предел) Получается, что все сводится к тому, с чего и начиналось) Вообще правильнее будет сказать, что 0.(9) = 1 по следствию из аксиомы Архимеда, так как на области действительных чисел не могут существовать бесконечно малые величины и любые 2 бесконечно близких числа - это одно и то же число) А по поводу концовки - существует ли 0.(9) или нет на множестве действительных чисел и равно ли оно 1 - это очень зависит от нашей аксиоматики и того, что мы считаем действительными числами
@@qts зависит от того, что мы понимаем под этими словами. Я имею под понятием "предел стремится к A" понимаю определение предела в смысле Коши, но с оговоркой, где A - это множество точек в бескончено малой окрестности от значения предела. То есть до того, как мы доказали, что все это множество на множестве вещественных чисел - в точности одна точка Но, вообще говоря, я упоминал это с отрицанием "а не")
Я что-то не понимаю, почему мы просто не представили его в виде рациональной дроби? Разве это не для всех периодических дробей возможно? А вообще да, у меня не получилось. Даже если попробовать представить как 0,(3) + 0,(6), то получится 1/3 + 2/3.. ничего себе парадокс)
Борис, добрый день, очень классный канал, можете пожалуйста просветить ликбез: если бы мы не прибегали к десятичной записи, то смогли бы вы вообще познать иррациональные числа? Получается, что мы их могли познать, только перейдя в десятичную запись, иначе как бы мы их узнали, открыли, и так иначе, как происходил этот исторический момент, так странно выходит, что если бы мы не начали записывать числа в десятичной записи, то иррациональные числа мы бы так и не узнали? (Хотя как мне кажется их придумали ради удобства записи, а так оказалось, что они описывают иррациональные числа, но это имхо)
Иррациональные числа возникают и без десятичной системы счисления, корень из двух, например. Поищите доказательство его иррациональности, десятичная запись там не причем.
Иррациональность не связана со системой счисления. По простому можно сказать так: существуют числа, которые нельзя записать в виде дроби. Другими словами, никакой дробью, в любой системе счисления, невозможно записать такое число. С поправкой, что система счисления не основана на этом самом иррациональном числе 🤣. Математики могут и в такие извращения, да. Типа Пи-еричная система счисления. Там Пи записывается прекрасно, выглядит как 1 😈
нерациональные числа есть, Пи -- иррациональное число, а 0,(9) не подходит под формулировку иррационального числа, и вообще под формулировку числа не подходит. Подходит под формулировку последовательности чисел.
Это как бы на любителя...Есть, нет, как хочешь... Дело в том, что заострять внимание именно на этом на последнем факте практического смысла нет. Ведь есть все предыдущие 20 минутные выкладки, которые вполне самодостаточны. Но! Опять же охота все-таки понять до конца суть вопроса. А для этого надо отвлечься от того, что известно об иррациональных числах и тут конечно придет на помощь этот небольшой фактик про отсутствие числа. Это "как сказать" визуальный способ отображения фунции y=x, где x равно конкретному числу между 0,(9) и 1. Что касается числа Пи, то думаю тут вы оговорились...
@@ВалерШах А почему вы утверждаете что оно не подходит под формулировку? 0,(9) - это как бы некий способ наглядно отобразить число, которое вызывает определенные сомнения в точности расчетов. Чем не иррациональность?
Пи находится между 3 и 4 и не является ни одним из них, то же самое с 3,1 и 3,2, 3,14 и 3,15 и т.д. Значит существует. Напоминаю основанием для несуществования является равенство с одним из чисел.
Сколько энергии/времени надо чтобы сдвинуть бесконечный ряд атомов на 1 позицию? Как легко вы умножим поделим а в физической интерпретации это невозможно
Пользуясь логикой в первой половине видео люди приходят к выводу, что бесконечность = 1/12. Это противоречие и говорит о том, что такая операция умножения и вычитания бесконечных рядов некорректна. (Доказательство от противоположного)
Есть крайне важный момент, который понятен почти всем программистам, но неочевиден математикам, мало работающим с булевой алгеброй: если одно из чисел не существует (не определено и пр.) то результат сравнения НЕ ложь, а неопределенность! Это очень сложно объяснить, но если писать много программ, которые опираются на результат сравнения двух объектов, то расценивание "(не существует) как не равно единице" ведёт к ошибкам в работе программы. Возможно как-нибудь дойдут руки, накалякаю видео на эту тему.
кажется, что просто все ломает понятие бесконечности, конечно, кажется, что 0,999...не 1, но это так, если мы остановимся записывать 9ки, но если мы будем продолжать записывать бесконечно, то ряд сойдеется к 1, поэтому это работает, также как работает ряд 1/2+1/4+1/8+....если остановиться, то будет всегда чуть меньше 1, но если ряд бесконечен, то это 1. такж как, если бесконечно складывать 1+2+3+4+...., то будет -1/12, но если остановиться, то будет гигантское число
0,(9) считает, что бориса трушина нет. Его просто не существует.
@Юлия Петрова а ты смотрела ролик до конца?
@Юлия Петрова 0.(9) появляется, когда 0.(3) умножают на 3. Больше никогда так не пишут. А 0.(3) это запись 1/3. И получается казалось бы парадокс, просто как шутка без какого либо применения.
на практике 1/3 так и пишут как 1/3, не переводя в десятичную дробь, либо пишут приближенное значение, смотря для каких целей.
@@pingpong_ 0,(3) это не 1/3, не путай людей
@@darkcorn6059 какое число больше?
@@pingpong_ 1/3 конечно, потому что если его умножить на 3, получится одна целая что больше 0,(9)
Дети в школе считают сумму геометрической прогрессии, по крайней мере они в это верят - это шедевр))
Блин, я верил(
Они правильно считают. Возможно просто не понимают что они считают и зачем.
бесконечно убывающей*
Именно так! В любой науке правильно всегда использовать термины "верить, полагать, предполагать, считать и т. п.", в противном случае (т. е. при использовании слов а-ля "уверен, наверняка, точно, так оно и есть" и т.п.) направление, использующее точную терминологию, неверно будет считать наукой. ;)
@@alexdantonyk1601 Верить в науке? Спасибо, но нет
Борис, вы прекрасный педагог. В школе ненавидел математику, поэтому поступил на истфак. В итоге к 30 годам поближе заинтересовался математикой. Такие люди как вы вдохновляют остальных на изучение чего-то нового. Спасибо!
Быть может тогда проблема ранее была не в педагогах, как ни странно, а в учениках?)
Сейчас, когда вы сами захотели что-то изучить и рахзобраться, в принципе любое видео на ютубе будет по силам и по интересам, даже не от столь педагогически подкованного человека.
@@trelawney8530 До перехода в среднюю школу с математикой всё было в порядке, а потом, когда пошли разные учителя - интерес её изучать совершенно пропал.
@@Symon_Musician прекрасно понимаю и в целом согласен с вашим утверждением, что с возрастом берётся и интерес, но ..
Если так задуматься? Ведь действительно с возрастом мы поменялись, у нас появился интерес, которого не было ( заметьте, его и сейчас никто не прививал, так что нечестно говорить :" просто учитель не хотел заинтересовать " ), появились умственные возможности заниматься подобным и самомнение, которое теперь заявляет " я интересуюсь, потому что это я так хочу, а вот в школе меня бы заставляли, поэтому я и не интересовался. "
Меня всегда больше смущала другая вещь: 1/3 = 0,(3). 2/3 = 0,(6). 3/3 = 1. Сам себе задал этот парадокс в 7-ом классе и всё никак и никуда. Ну, теперь вроде бы понял, хотя мозгу нужно ещё время на осознание.
3(1/3)=3×0.(3)=0.(9)
а я наоборот, так осознал, что 0,(9) = 0,(3)+0,(6)=1/3+2/3=3/3=1 => 0,(9)=1
Я как-то раз показал такое доказательство своему преподу по матану(0.(3)*3=0.(9)=1/3*3=1), а она сказала, что такие махинации с бесконечными числами проводить нельзя😢
@@TheMobyNickGamesChannel Ну в данном конкретном вашем случае не понятно, что не устроило препода.
Я пришел к выводу, что это косяк десятичной системы счисления. 1/3 - это рациональное число, которое мы записали в виде А делить на В, а в десятичной системе мы записать его не можем, по этому и вылезла бесконечная дробь. Еслиб эволюционно сложилось так, что у нас было бы 12 пальцев на руках и мы бы исопльзовали 12ти значную систему счисления, то проблемы бы не было и это число записывалось бы как 0,4 - т.е. ноль целых, четыре двенадцатых))))))
Послушав Трушина, всегда становишься чуть-чуть умнее. Талант объяснять!
Если будете на слово верить таким вот видео - будете становиться чуть-чуть глупее )
@@pilgrimdust7511 Здесь-то что не так? А Трушина уважаю хотя бы за то, что не стесняется признавать свои ошибки. Но, даже если Вы правы, поглупеть в мои годы вряд ли получится. Просто дальше некуда.
@@servenserov Ну, во-первых, не отчаивайтесь! поглупеть - можно всегда! А во-вторых - вот ссылка на мой комментарий ruclips.net/video/VDxWUxgaMUM/видео.html&lc=UgzkXq_IDg8ZPVrSQUF4AaABAg
@@pilgrimdust7511 Увы, ссылка открывается в андроид-приложении и найти Вас среди 600 комментов затруднительно. Не могли бы скопировать тот коммент в текущий чат, если это, конечно, актуально. Мне лично ролик не показался интересным, а тема выглядит надуманной. Есть темы получше.
А мне всегда становится чуть более понятно то, что не понимал хорошо, но при этом добавляется что-то непонятное, о чем я раньше и не думал;)
Хороший зум))
Почему не принять другой вариант (который в принципе все математики и принимают): любое действительное число можно записать в виде бесконечной десятичной дроби, причем для чисел, которые можно записать в виде конечной десятичной дроби, такая запись имеет 2 формы - с (0) в конце или (9) в конце.
Вот это круто
0,0 с (9) в конце не записывается
@@LionKing-qp1lk есть способ, но вы в него не поверите.
@@1234567qwerification ну и что? Покажите хоть
Genghis Khan > Почему не принять другой вариант (который в принципе все математики и принимают): любое действительное число можно записать в виде бесконечной десятичной дроби, причем для чисел, которые можно записать в виде конечной десятичной дроби, такая запись имеет 2 формы - с (0) в конце или (9) в конце.
Потому что иначе не получишь столько обсуждений под видео и как следствие - раскрутку канала ) Бабло зарешало математику, называется. Как, в принципе, кто-то из философов и говорил, что если бы от математических теорем зависели бы доходы людей, то доказывались бы нужные теоремы. )
По поводу ""ошибки"" автора видео - он декларирует какой-то способ описания числа с помощью десятичной дроби, объявляет его единственно правильным, показывает, что с помощью этого способа девять в периоде ну никак не получить, а значит - барабанная дробь! - такое число и не существует вовсе. Ситуация примерно как с жопой получается - жопа есть, а слова нет )))
Не очень понятен переход от расположения числа 0,(9) на числовой прямой к тому, что его не существует. Почему не существует?
Как я понял, причина такая же, почему и бесконечность не является числом. Это такое понятие, бесконечная последовательность, которая записывается таким символом. Числом не является. И оперировать им, как числом, нельзя
@@okad_das в профильном мордковиче 10 класса, когда промежуток от 0 до 1 делят на 10 частей и считают отрезки, а не черточки, как Трушин, так что я хз
Как я понял, десятичная дробь - это представление рационального числа, значит её можно представить в виде дроби m/n, где числа m и n целые. Например, 3.(3) = 10/3. Какая дробь соответствует числу 0.(9)?
@@koshchey42 чо тупишь чел, 0,(9)= 1/1, 1 и целое и натуральное число
@@ИзяШмуль 1/1 это 1, а не 0.(9). Если идти от обыкновенных дробей, невозможно получить 0.(9). Это я имел в виду.
Но если серьезно, все равно осталось ощущение недосказанности. Вроде я кое-что понял.
Есть дроби 0/9, 1/9, 2/9 ... 7/9, 8/9, но дроби 9/9 нет, это уже целое число, это уже единица, это уже 1, 1+0/9, следующая целая часть.
Но ощущение недосказанности все равно остаётся. Будто я понял одно конкретное значение, но не общую формулу.
Вопрос существование десятичной дроби 0,(9) вопрос работы с бесконечностью. Вы заметаете эту работу под ковер и соглашаетесь, что бесконечные дроби существуют и бесконечные суммы, даже применяете к ним правила работы. Из данных соглашений вытекает и запись 0,(9), так как по определению это обозначение суммы бесконечного ряда (как и любая бесконечная десятичная дробь) или можно сказать, что это короткая запись самого ряда.
Но вдруг решаете, что надо ввести дополнительное ограничение на их существование, то есть на обозначения, которые введены изначально.
Это не обще принятое соглашение, полагаю это какой местный фольклор.
превет
Он, видимо, имеет в виду ряд рациональных чисел, но не говорит об этом
@@DeMastri чё самая умная блять
Engels пздц ты неадекват🤦♀️🤦♀️🤦♀️
Не совсем так...Бесконечности в природе не существует, как и нуля! Поэтому есть строгий запрет деления на ноль! Ноль - это отсутствие числа, причём ноль всегда не определён: мы можем ноль яблок заменить нолем груш или нолем грибов - и если мы решаем задачу про яблоки, то будет странно, когда яблоки внезапно заменятся грибами. Бесконечность же - это отсутствие предела! Тобишь бесконечные суммы - это суммы, не имеющие предела сложения. Однако же, предел бесконечных сумм - это минимальное число, которое не будет достигнуто никогда, сколько угодно мы бы не складывали!
Обрати внимание, что при вычислении пределов или сумм, напрямую ноль и "бесконечность" не подставляют, за исключением очевидных простых примеров.
Запятую в бесконечной дроби можно переносить при умножении или делении на 10 потому что постоянный множитель можно выносить за знак суммы сходящегося ряда, и потом за знак предела этой суммы при числе слагаемых стремящемся к бесконечности. Первое по закону дистрибутивности а второе по свойствам сходящихся последовательностей
Это вопрос определения. Можно либо сказать, что некоторые десятичные дроби не задают никакого числа, либо сказать, что иногда разные десятичные дроби задают одно и то же число. Оба варианта приводят к мелким техническим сложностям, но ничего интересного тут не зарыто.
(кроме понимания того, что десятичные дроби для теории неудобны)
Гы, Михаил, гы! И еще раз ГЫ. Это ОЧЕНЬ УДОБНО для понимания САМОЙ СУТИ ВОПРОСА. Теоретический смысл канешно у этого числа (в практическом смысле его применения) не очень велик. Но если вдуматься этого от НЕГО и не требуется. Тут нужно просто понимать, что в действительности кроме рациональности есть еще иррациональность, но все было бы действительно просто как допустим с пифагоровым "корень из два" - это число иррациональное и все тут. Но сложность проявляется в его исключительной абсолютной величине. Оно настолько мало, что уважаемый преподаватель даже объявил нам что это числа ПРОСТО НЕ СУЩЕСТВУЕТ. ЕГО НЕТ! В этом вся сложность!
@@halflife-gaming "в действительности" ни рациональности, ни иррациональности нет, это всё абстрактные конструкции. Ни разу не было, чтобы я шел по улице и вдруг увидел натуральное число. И никакой "сути вопроса" тут нет, есть мелкая путаница у людей, плохо понимающих определения (в первую очередь - школьников, которым строгое определение вещественных чисел вообще никто не рассказывал).
Тогда и любое число формата х,уz(9) тоже не существует. Потому что на самом деле это х,у"z+1"
браво! от души
Так можно (с помощью очевидной нормировки) доказать, что никаких периодических дробей нет)
Спасибо!
1/3+1/3+1/3=1, а не 0,(9)
Но если взять систему вложенных отрезков, где a1=0, b1=1, an=(an+bn)/2(для удобства делим на 2, вместо нее можно взять любое число), b1=b2=b3=.....=bn..=1. Если бы существовал 0,(9) то мы взяли бы a=am=0.(9) и продолжали бы еще, еще и еще до бесконечности, что противоречит теореме о вложенных отрезках, где общая точка 1.
Если в моем доказательстве есть ошибки напишите плиз
Есть вариант попроще, в соседнем трэде применили на троле. Но он был настолько глуп, что даже не посчитал.
Смотрите, если 0.(9) != 1, значит существует хотя бы одно (чисто для смеха - одно) число между ними. => Найдём такое число!
(0.(9) + 1)/2. Когда посчитаете - удивитесь ;-)
Но на самом деле числа 0.(9) не существует 🤣🤣🤣
Привет, спасибо за ролик. Надеюсь я поступлю.
Оказывается и Трушин может быть неправ, хоть он и ТРУшин :)
А именно, неправ в высказывании "... по большому счету это не число."
Ошибка заключается в том, что за единственный способ получения бесконечной десятичной дроби принимается способ деления целого числа на 10^n и последовательной записи остатков.
Но число можно получить и другим способом. Например умножением бесконечной десятичной дроби на целое число.
Например, 0,(1)*2=0,(2).
Возникнет, конечно, небольшая сложность, когда умножение очередного знака после запятой на целое число даст результат больше 9, но она вполне решается, если разбить бесконечную десятичную дробь на бесконечную сумму конечных десятичных дробей.
Например, 0,(3)*4=0,333*4+0,000333*4+ ... +0,333*10^(-3*(n-1))+... = 1,332+0,001332+ ... = 1,(3)
Так что операция умножения бесконечной десятичной дроби на целое число вполне себе правомерна, и 0,(3)*3=0,(9).
И, главное, сам доказал, разными способами, что это число равно 1, и тут на тебе - сравнил его с 0/0, которое действительно не существует.
Аккуратнее, Борис :)
по твоей логике, число 0,(9) можно умножить на 2, тогда получается 1,(9)8 ( или 1,(9), ведь в твоём комментарии у тебя 0,(3) * 4 это 1,(3) без двойки в конце, тогда ни о каком 1 = 0,(9) и речи идти не может, ведь 1*2 = 2, ну а если не так, то 1,(9)8 ) в таком случае, получается, что это число не может равняться двум, да и вообще все, кто доказывают, что 1 = 0,(9) отрицают запись 1,(9)8 , так как тогда они будут вынуждены признать существование бесконечно малого числа, что, в свою очередь, будет доказывать, что 1 больше 0,(9) на бесконечно малое число.
@@searine-t3k У меня вопрос к вашей фразе: "... 1,(3) без двойки в конце ..."
Ну, или к записи "1,(9)8". Что это значит?
На каком месте стоит восьмерка?
Если на бесконечном, то все в порядке ;) Пусть там хоть единица стоит, хоть ноль, все равно это число равно двум.
И, да, бесконечно малое число не существует. Ну, или если вы захотите такое число ввести, то увидите, что это просто 0.
Есть бесконечно малые (и бесконечно большие), но это не числа.
@@Vovkq вообще, я вёл к тому, что числа 0,(3) не существует, оно получилось, когда попытались 1 поделить на 3, сначала 1/3 = 0, потом делить уже будем 10 на 3,бесконечно получая 1 в остатке, добавляя ноль, и опять деля 10 на 3. Если этот процесс происходит бесконечно, то и никакого числа получиться не может, ведь если это число, то существует такой момент, в который мы остановились, если это не число, то можно назвать это процессом, или просто приближенным 1/3, так как 1 нельзя поделить на 3 в десятичной системе.
@@searine-t3k Прошу заметить, на мой вопрос вы не ответили.
Но, ладно.
Число 0,(3) существует и оно равно 1/3, что легко доказывается.
В вашем рассуждении есть ошибка: "Если этот процесс происходит бесконечно(!), то и никакого числа получиться не может, ведь если это число, то существует такой момент, в который мы остановились(!)". Если мы остановились, то процесс не происходит бесконечно. Но, как вы правильно сказали, процесс записи остатков остановиться не может, потому что каждый раз остаток получается. Значит мы не остановились.
Да, ручками записать такую десятичную дробь за конечное время невозможно, но нашелся выход: взяли и написали бесконечно повторяющуюся последовать цифр в скобочках и назвали это (в периоде). Делая такую запись, мы подразумеваем: "Мы потратили бесконечное время и записали бесконечное количество троек после запятой."
И еще одно непонятное высказывание: "... 1 нельзя поделить на 3 в десятичной системе". Частное двух чисел не зависит от того в какой системе мы его записываете. В троичной системе это число будет записано как 0,1, в десятичной - 0,(3). Но это одно и то же число, которое равно 1/3. Отличается только запись.
@@Vovkq 1/3 - это просто деление число на число. Если бы 1/3 равнялась 0,(3) Никто бы не записывал это как 1/3, вед ь какой смысл записывать число в виде дроби, если его спокойно можно привести к десятичной дроби или целому числу, это не так важно
я купил единичную плитку метр на метр и отпилил от нее 1/10, а потом от этого кусочка еще 1/10 и так далее до бесконечности, остались куски 9/10, 9/100, 9/1000, 9/10000 и так далее, любой может повторить🫠 а потом я их сложил: 0.9+0.09+0.009+0.0009+...=0.(9) сложилось обратно в 1, все делал в коробке, никакие куски не потерялись и вес не изменился, обратно я получил ту же самую плитку, ой Борис, кто-то тут не прав😉
То чувство, когда автор говорит о том, что какие-то понятия даются в 9-11 классах, а у тебя в школе о таком даже близко речи не было(
или ты не слушал как чаще бывает
Школьная программа очень сильно упрощена. Если сразу математику давать во всей ее красе, у детей поедет крыша
Сочувствую. Самообразование - ваш выход 😉 Кстати, канал подходящий, чётко, без воды.
@@olegshyshkov4740 Давать можно и порционно. Но вот честно говорить, мол, эта вещь существует, но мы пока ее не рассматриваем, ибо сложно.
В школах именно, что даже не упоминают многие факты, даже обзорно, что никакого смысла не имеет.
Абалденное видео!!!!!! Спасибо!!!!!
0.(9)=сумма 9*10^(-n) где n=1,2,3... и до бесконечности
Если рассматривать множество гиперреальных чисел, то единицу после бесконечности нулей можно считать бесконечно малым числом. 1-0,(9)=[0,(0)1] формально. ru.wikipedia.org/wiki/0,(9)
Объясню, вероятно, чуть менее сложно, без использования мат. операций. 0,(9) - число, бесконечно стремящиеся к 1. Следовательно, разница между ними будет бесконечно эфемерной.
Что значит и почему "оно стремится к 1", Разве оно не стоит на числовой оси, в конкретном месте? И какая будет разница между 0.(9) и 1, если у него нету конца? 0.(9) это бесконечные девятки, следовательно между числом 0.(9) и 1 ничего не стоит, следовательно они равны.
@@kift. Как! Вы не сможете даже вставить никакого числа между ними?
@@eugengrouk8693 Ну а по-вашему, какое число стоит между 0.(9) и 1?
@@kift. Это была шутка. По-моему между ними никаких чисел нет, потому как обе этих записи суть одно число. Как и 1.(0).
@@kift. не используйте это как аргумент, я ведь могу сказать что между ними стоит число (0.(9)+1)/2.
Фихтенгольц в первом томе пишет что в один из моментов наше целое число при таком десятичном делении в один из моментов совпадет с одним из концов промежутка, в который мы его заключаем, левым или правым - по нашему произволу, и приводит, в отличие от случая с иррациональными числами, нестрогое неравенство. Так что вроде бы с этой девяткой в периоде из этих соображений проблем нет
И в принципе пишет, что любое целое число может быть представлено в виде периодической десятичной дроби слева или справа, с нулями или девятками в периоде соответственно
О, я тоже читаю это книгу. Довольно трудно после школьной математики, но автор очень вкусно обьясняет
Нам давали формулу, по которой можно бесконечную периодическую десятичную дробь представить в виде дроби. Мы ее даже доказывали, только в 6 классе это доказательство было не очень понятным, поэтому формулу пришлось просто выучить, ну и как следствие, никто ничего не помнит сейчас... Когда увидела название подумала:"Как кому-то в голову могло придти, что 0,9999999... может каким-то образом равняться 1? Есть же формула!" А потом почитала, что пишут, что 1/3+2/3=3/3, и вот здесь стало страшно. А формулу все равно не помню:)
0.(3)=1/3 -> 1/3+1/3=0.(3)+0.(3) ->
0.(6)=2/3 -> 1/3+1/3+1/3=0.(9)=3/3. Это при условии что мы можем складывать периоды 0.(3) +0.(3)мы же можем складывать десятые, сотые, тысячные..... И будет получаться 0.(6) если взять это за истину то 0.(9) =1 то это правда)
Теперь сложим 0.(7) + 0.(7) -> 0.(14) (нет)
@@_mrix_534попробуйте познаково сложить 0,(6) и 0,(3). 6 десятых и 3 десятых, 6 сотых и 3 сотых, 6 тысячных и 3 тысячных и так далее вперёд в бесконечность. )))
ВНЕЗАПНО у вас слева от запятой единички никак не получится, а будет только бесконечный ряд (строка, строй) девяток справа или именно 0,(9).
@@_mrix_534а в вашем примере ещё интереснее получается, потому что, если внимательно посчитать, то 0,(7)+0,(7) это не только не 0,(14), но даже не 1,(4), а...
...
...барабанная дробь...
...
...фанфары...
...
1,(5)
А еще говорят "точная наука" - тут же все сплошь одни абстракции!
так абстракции-то совершенно точные
Давайте не путать теплое с мягким. Абстракция =/= неточность.
По поводу 0/0 = 1: равенство верное в том смысле, что справа может быть вообще любое число Х (что легко проверяется умножением: 0 = Х*0), в том числе и 1; другое дело, что хотя операция 0/0 выполнима, но ее результат не определен и потому она бесполезна.
С другой стороны, если 0,(9) существует, то есть также 0,(0)1 (если такая запись вообще корректна), и их сумма - как раз 1
Но 0.(0)1 также не существует. Периодические существующие дроби можно представить в виде деления натуральных(а может и целых, ну тогда кроме нуля) чисел. Например, 0.(3) существует, это число 1/3 (одна треть) и как раз такие числа можно вывести двумя способами, которые приведены в начале видео. А 0,(9) нельзя представить в виде деления теми двумя способами, значит его и не существует! 0,(0)1 вообще даже начало алгоритма не работает, так что его подавно нет!
@@oneivanone, но ведь 1/3 - это не 0,(3), это предел 3/10+3/100+...? Тогда 1-это предел 9/10+9/100+... И все они существуют, но не равны 1 и 1/3
@@Борисыч-в9м , в общем-то доказать логически, что 0.(9)=1 легко, если доказать, что 1/9=0.(1) (просто умножаем на 9 обе части и получаем как раз 1=0.(9).
Переносим влево 0.(9) и получаем 1-0.(9)=0 или 0.(0)1=0 (можно доказать что 0.(0)2=0 рассмотрев 2=0.(9)+0.(9)
Но математически это доказать бессмысленно. (Больше скажу, периодом наподобие 0.(1) и 0.(12) может быть лишь дробь x/((10^n)-1), где x (натуральный) - то, что мы хотим получить "в скобках", n - натуральное число, показывающее число знаков в периоде (x всегда меньше n, если больше то делаем дробь суммой натурального числа и правильной дроби). В целом тема интересная, можно даже поискать периоды в других системах исчисления (в двоичной 0.(1) = 1) но периоды в математике бессмысленны, так как они лишь отображение дробей в десятичных (в других системах исчисления не десятичных) дробях.
Александр, согласен с вами насчет систем счета. Это проблема десятичной системы- некорректное отображение при делении некоторых чисел на простые числа
Они все существуют как иррациональные числа🙄🙄🙄
Да, правда
Вы прекрасно всё объясняете. Хоть я и смотрю недавно ваш канал, но должен отметить, что у вас дар на пальцах рассказывать о математике, весьма полезные ваши видео не только учащимся выпускных классов, но и людям, которые в силу каких-либо причин вспоминают математику.
Если уж проводить геометрические аналогии, то давайте рассмотрим точку, прислоненную к точке 1 слева. Что такое точка, прислененная слева? Это такая точка, которая при рассмотрении каждого отвечающего интервала раз за разом до бесконечности будет попадать в девятую его часть. А теперь доказывайте, что такой точки не существует :))
Между любыми двумя точками лежит бесконечно много точек )
@@trushinbv , недостаточно. А если это не так, то они совпадают. А уже поскольку не совпадает - следовательно, не существует.
0.(9) - это другая запись числа 1. Говорить, что такого числа нет - все равно, что говорить, будто нет числа 1.0 или 1/1
нет, это число меньше 1 на бесконечно малое число ( 0,(0)1 )
@@5ere9a такого числа нет, и записи такой не существует. Бесконечно малыми бывают функции в пределе, а не числа.
@@5ere9a Смотрите определение бесконечной периодической дроби. Там прямо сказано, что любое рациональное число p/q может быть представлено десятичным дробным с периодической частью. Если есть период, то это как бэ намекает, что за ним стоит рациональное число. Причем точное. Поэтому 0.(9) это другой способ записи 1. Это люди так сами сказали, что давайте для рационального числа p/q в десятичной форме дроби введем период, и будем его писать в скобочках. Это как сказать, что давайте 1 в дробном представлении писать как 1/1, а потом начнется спор а всегда ли 1 = 1/1.
Я думаю это так, потому что какую-нибудь дробь(например 1/3) нельзя представить в десятичной системе, даже 0.(3) не будет являться 1/3, ведь это лишь число, максимально схожее с 1/3, поправьте если ошибся
1/3 * 3 = 1, но
1/3 * 3 = 0.(3) * 3 = 0.(9) = 1
Что не так?
Resad все правильно
правильно он просто перекрутился придумывая что то сложное . Если так подумать он дал одно объяснение почему он прав но это 1 утверждение которое даже звучит не убедительно если напишите в Википедии даны несколько точных решений этого вопроса
откуда информация что 1/3 это 0,(3)? 1/3≠0,(3)
@@MrRocert напиши в посиковик девять в периоде равен 1 и выйдет сайт на Википедии и поймёшь насколько ты умный и видишь дальше носа . Там чуть ли не десять нормальных доказательств .
@@MrRocert сядь и подели в столбик 1 на 3. Как закончишь - приходи, с такими заявлениями.
Подскажете, как решать задачу 1 в гл.2 $1 Зорича? Формулировка as follows:
Покажите, что число x из R рационально тогда и только тогда, когда его запись в любой q-ичной системе счисления периодична, т.е., начиная с некоторого разряда, состоит из периодически повторяющейся группы цифр.
убедительнее было бы доказывать так
1 = 3*1/3 = 3*0.(3) = 0.(9)
Хорошо объяснили спасибо вам большое
У меня есть вопросы. Вы утверждаете что 0.(9) это не 1. Но сами привели 2 доказательства того что 0.(9)=1, и не указали где же там ошибка. Во вторых с чего вы решили , что 0.(9) не существует? Вы можете это доказать ?
Каждому числу десятичная дробь задается однозначно (чисто из определения), поэтому одному числу не может соответствовать две дроби.
1.(9) тоже не существует?
Просто не бывает 9 в периоде.
Не знаю каким определением вы руководствуетесь и с чего вы взяли что любое действительное число задается десятичной дробью однозначно.Ни в одном определении бесконечной десятичной дроби нет оговорок насчет цифры 9 в периоде. В периоде может быть любое десятичное число. Возьмите хоть определение бесконечной десятичной периодической дроби из той же википедии (или вы не считаете этот источник достаточно авторитетным? ) Далее цитата по поводу неоднозначности представления:
Всякое действительное число вида a =p/10^s, где p - целое, s - целое неотрицательное, может быть представлено в виде десятичной дроби более чем одним способом. Если a != 0, то оно может быть представлено как в виде конечной десятичной дроби, а также бесконечной дроби, полученной приписыванием нулей в конец после запятой, так и в виде бесконечной дроби, оканчивающейся на 999...
Есть разные подходы, но вполне естественно в качестве определения бесконечной десятичной дроби брать то, что в википедии (ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%81%D1%8F%D1%82%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D0%B4%D1%80%D0%BE%D0%B1%D1%8C) идет в разделе "Алгоритм разложения числа в десятичную дробь". Этот алгоритм однозначно сопоставляет каждому числу десятичную дробь, и по этому алгоритму 0,(9) получиться не может.
Как мы все хорошо помним ещё со школьных времён (из учебников Колмогорова, например), отрицательные действительные числа можно записывать со знаком "минус" над целой частью: −1.25 = 2̅.75, т.к. −2 + 0.75 = −1.25 (удобно при операциях с десятичными логарифмами).
Тогда, если мы считаем 0.999... _допустимым_ представлением действительного числа 1.0 в виде бесконечной десятичной дроби, мы, по этой же логике, должны считать 1̅.999... допустимым представлением действительного числа 0.0
а число Пи существует?
Да, просто его конец не определен, посмотри как его считали
Существует в виде определения, в виде суммы бесконечного ряда, в виде корня какого-нибудь уравнения. В виде конечной записи в системе счисления с рациональным основанием - нет.
@@alexkuritsyn77, и похоже вполне себе может существовать в виде конечой записи в пи-ричной системе счисления.
Пи существует как величина. А вот 0.999... нет такой величины.
Если уж применять обычные операции к периодическим числам типа 0.(9), то очевидно, что 0.(9) < 1, так как первая значащая цифра у 0.(9) ноль, а у 1-цы - один. Как бы получается, что 0.(9) меньше 1.
Вопрос на сколько меньше)) Разница по идее есть, но она не конечна. Чтобы её выразить, на помощь приходят пределы. 0.(9) - это предел, стремящийся к единице слева. И получается, есть 1-ца и предел, который к ней слева стремится. А значит разница между ними стремится к нулю.
В каких-то случаях этой разницей можно пренебречь, и тогда 1 = 0.(9). Но в некоторых случаях она может оказаться ощутимой: 1 / (1 - 0.(9)) стремится к бесконечности, а 1 / (1 - 1) - попросту невозможная операция.
Всё просто. В математике есть числа х+0 и х-0, то есть вычисление функции для х справа или слева.
Число 0,(9) является пределом функции 0.9+0.09+0.009... и равняется (1-0) то есть одному слева
Если вы правы, то сможете привести число, хотя бы одно, которое в аккурат находится между 0.(9) и 1.0. Но не функцию, как нас пытаются ввести в заблуждение, а число
@@eugengrouk8693 Числа между числами, находящимися на бесконечно малом расстоянии, нет. Но это не значит, что я не прав.
Немного не понял переход. "мы не запишем единицу как 0.9 и что-то ещё после запятой, так как 1, не находится между двумя отметинами, следовательно 0.9 не существует. " Или я не так понял рассуждение?
0, (9) - указание на то, где искать число.
но мы его не можем найти, потому что по указателю надо пройти бесконечное количество раз.
точно как и число, которое нужно добавить, чтоб получить 1.
0,(0)1 - прежде чем добраться до единички, придётся написать бесконечное количество нолей.
Поняли правильно, но не до конца. Это все потому что оне (обяъснение) не полное и обрывается на "ЧИСЛА НЕТ". Но в принципе, этого не требуется в полноты картинки...Вообще преподаватель тут как бы предлагает ученику САМОМУ порассуждать некоторое время на бумаге, оставляя его как бы "НИ С ЧЕМ" в кармане, но на то она и она что бы думать...
@@nikolayparygin610 в любом иррациональном числе "по указателю надо пройти бесконечное количество раз", так что аргумент не канает, и Виктор прав: вывод "числа не существует" был взят с потолка
Видимо не существует без предельного перехода. Предельный переход все меняет и превращает 0,(9) в 1. Сам процесс написания девяток бесконечен и трудно сказать как мы понимаем здесь бесконечность, потенциально или актуально.
@@evgtro8727 математика без предельного перехода, или без операции сложения, или без цифры ноль - это уже не математика. Так что сама фраза "без чего либо" не имеет смысла.
Далее, возьмем к примеру число пи, или любое другое не алгебраическое иррациональное число. Никакого предельного перехода в них нет, из этого же не следует, что этих чисел не существует
Пока не начал полностью смотреть видеоролик, скажу про функцию гиперболы
1
1 - ----=y , при x →∞ y стремится к единице, но неравно 1.
x
Что именно не равно 1?
Нельзя проводить математические действия с числами в периоде. Надо переводить их в дробь, иначе результат будет не корректным,как не с существующем 9 в периоде, который округляется или равен до целого.
Ноль не положительное
Программисты: э пагоди
Математика не перестаёт удивлять
Просьба с помощью последнего метода с отрезками пояснить, почему это не работает в остальных случаях: 1.(9) не равно 2, 2.(9) не равно 3 и так далее.
Эм... А почему вы решили, что это не работает? Можете привести доказательство?
Ну, как раз таки работает
Все дело в десятичности и отсутствии некоторых цифр, в данном случае 3, как делителя десятки, это и приводит к костылям типо того, что 1/3 = 0.(3) и 3х0.(3)=1
По философии Лейбница , эта разница между 1 и 0. (9) является монадой , т.е. духовной частицей. И если отделить мир материальный от мира духовного , то монада не повлияет на вычисления сделанные с помощью формул. Таким образом в доказательствах равенства 1 и 0. (9) мы наблюдаем как математика описывает мир материальный, являясь частью и духовного мира.
Странно, а почему нельзя понимать его как предел, как обычно? Не возникает проблемы со строго меньше 1.
по сути это предел и есть
Это и есть предел, поэтому он и не равен 1, а только стремится к 1
@@DeMastri он стремится к 1, но дробь бесконечная, следовательно он равен 1)))
@frezsh Дроби 0,(0)1 не существует, это некорректная форма записи)
Никита Звонков 🤦♀️
Формально говоря, 0/0 -- в том числе и 1 (по определению деления). Проверяем: 1*0 = 0 -- всё правильно. (Но это верно для любого числа, поэтому договорились так не делать.)
правильнее придерживаться правилам:
А в степени 0 равно 1, если А неравно 0, НО
0 в степени N равен 0, если n неравен нулю).
@@LEA_82 вообще-то я про деление 0 на 0. А 0 в степени 0 пока разумно не определяется.
Вообще, можно определять десятичную бдд просто как последовательность цифр, а "значение" бдд как точную верхнюю грань последовательности конечных дробей и говорить, что бдд 0,(9) и 1,(0) имеют одинаковые значения
Можно. Но тогда нужно будет ещё доказать, что любое действительное число можно представить такой дробью? )
@@trushinbv если существует доказательство того, что любое действительное число можно показать на действительной прямой, то тогда это тривиально же
Находим для x из R [x], рассматриваем единичный ОТРЕЗОК с целыми концами, содержащий x(объединение всех таких является численной прямой, то есть хотя бы один содержит в себе х), далее разбиваем наш отрезок на 10 и выбираем любой из отрезков, которому принадлежит x, что в принципе всегда возможно, т к объединение отрезков являет собой отрезок, на котором точно лежит x. так можно бесконечно продолжать запись числа, и можно тогда утверждать, что любой записи соответствует хотя бы одна точка на числовой прямой (у нас тут лемма Холла для бесконечного количества отрезков, которые являются по себе выпуклыми 1-мерными компактами, попарно пересекающимися). Если же их две или больше, то между любыми двумя есть расстояние, большее нуля, а значит они рано или поздно не будут покрыты одним из отрезков. Т.о. любой записи соответствует ровно одно число(точка на прямой) а любому числу 1 либо 2 записи
@@trushinbv Ok, her is in. Pshhh-pshhh. Давайте тогда записывать все иррациональные числа при помощи циркуля и все. ))
До этого видео был полностью уверен, что 0.(9) и 1 конечно же разные числа, но:
а является ли 0.(9) иррациональным числом?
наверное нет, потому что:
Иррациональные числа - это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби.
А является ли 0,(9) рациональным числом?
навероне нет, потому что:
Рациональные числа можно представить обыкновенной дробью.
0,(1) можно представить обыкновенной дробью, это 1/9.
Так в какое множество оно входит?
Не знаю, но в какое-то должно входить, если оно (число) существует.
А оно существует, потому что мы его можем записать, и даже представить себе на примере отрезков, как показал Борис Трушин.
Доказательств, свидетельствующих, что 0.(9)=1 предостаточно, опровержений нет.
Произведите любое математическое действие с 0,(9) и поймете, что 0,(9) ведет себя как 1.
Доказательство неравенства, приведенное в данном видео носит какой-то умозрительный характер, из оперы "...вы что, на шаре живёте? вы живёте на плоскости..."
Или нужно приравнять 0,(9) к единице, или создать новое множество чисел, которые будут представлены суммой рациональных чисел, пусть даже это множество от рациональных будет отличаться только одним числом 0,(9).
Кстати, есть ещё одно лаконичное доказательство, что 0.(9) равно 1. Для этого нужно взять квадрат или прямоугольник(на самом деле можно взять любую фигуру, просто на примере квадрата будет более наглядно) и пусть он будет 1x1, то есть площадь равна 1. Делим его на 2 части: первая часть занимает 1/10 объёма, вторая остальной объём - 9/10. Первую часть делим по тому же принципу, и так далее. Площадь квадрата равна сумме площади входящих в неё фигур, то есть 0.9 +0.09+0.009..и так далее, что и должно быть равно 1 в итоге, так как площадь квадрата не изменялась, и постоянно равна была 1.
вы хотели сказать "площадь квадрата"?
1/10 объёма...
Но 0.9+0.09+... это сумма площадей не всех фигур. Доказательство им не является. Доказать, что 0,(9)=1 можно только арифметически, считая, что 0,(9) это число. Но эта десятичная дробь им не является
какой 1 в итоге? ты забыл (бесконечно)последнюю часть убрать из квадрата
@@nikolayparygin610 она стремится к 0. Ваш кеп
Это еще раз доказывает, что если яблоко разрезать на три части,
а потом сложить, никогда не получишь первоначального яблока!
Вам не удастся разрезать яблоко на три РАВНЫЕ части
@@olegshyshkov4740 Олег, я скажу даже больше. Никто не сможет разрезить яблоко даже на две равные части 🤣🤣🤣
Странное утверждение. Понимаю о чем вы хотели сказать но если я правильно понял то вы ошибаетесь.
Кто там теорему Ферма доказал? Уайлс с Перельманом? Вот приносят они доказательство, а им говорят: "Да погодите вы с Ферма, мы тут не можем понять, равны 0,(9) и 1 или нет".
(дальше должен быть звук, как в конце Ералаша. Пада-бада-па пиу!)
перельман вроде гипотезу пуанкаре доказАЛ. или ещё и за ферма брался?
@@TheSnos15 тоже интересуюсь, почему это Перельман вдруг Ферма начал доказывать:)))
Нам это А.Б. Сосинский когда-то рассказывал.
А чему тогда равно 0,(3)+0,(6)? (Наверное, 1, но как, Холмс???)
1/3 + 2/3 = 1 -- норм )
Но, если бесконечные десятичные дроби нельзя складывать поразрядно, зачем они тогда?
Это одна из форм записи любого действительного числа, но складывать их не так просто, особенно когда они не периодические. А перемножать так вообще страшно )
Просто нужно учитывать, что если получается (9), то нужно предыдущую цифру увеличить на 1, а период отбросить.
Ок. Просто это правило "если получается (9), ..." тоже может вызвать вопрос - а почему? Лучший ответ, кмк, - по определению. И к тому же, если не считать 0,(9) числом (а вместе с ним и много других бесконечных дробей), то получается, что избавляясь от "дырок" на числовой оси, мы получаем "дырки" в множестве десятичных дробей. Некрасиво. )
Алексей Никитин 1/3+2/3=1
У многих возникает путаница в силу непонимания объекта разбора фундаментально. Помогу немного в простой форме. Что исключает вычурные доказательства среди математиков и физиков.
0,(9), в целом, это небольшое число. Меньше единицы. Каждый элемент после запятой тем меньше, чем дальше. Что вызывает ощущение не просто сильного приближения к 1.
Введём эквивалент этому числу числом без запятой, где тот же принцип соразмерности эквивалентен. Уберём и склонность мозга к округлениям, с интуитивным смещением и неточностью формулах.
Берём 9. И 9999..... - (9). Но единица в конце, такая же соразмерная, выглядит совсем по-другому. Хотя она АБСОЛЮТНО такая же.
Таже соразмерность погрешности, если мы пользуемся погрешностью округляя и применяя это как-то.
Помог выбраться Борису из несуществования чисел среди целых и немного странного доказательства. Путём нахождения эквивалента в них. Используется фундаментальное понятие соразмерности, которое более фундаментально чем число и число является ЕГО СЛЕДСТВИЕМ.
Обладая брешью в знаниях изначально, мы начинаем путаться и над фундаментом растут пробелы и трещины.
Число есть нечто отдельное от остального и соразмерное части. Это его физическая природа. Именно закономерность соразмерности и есть число. Иначе это недетерминированная масса чего-либо. Число это нечто определённое исключительно в отношении чего-то вне. Без этого числа нет. Соотношение. Соразмерность. Что и есть фундаментальная физическая суть математики. Присутствующая объективно как любая физика.
Буквально. И более. Форма чисел соответствует природе соотношений, которая может меняться. Любые объекты мира соотносятся друг к другу. Не только количественно. Но оставим физику и химию.
Само понимание того что есть несколько объектов основано на их присутствии и законах взаимодействия. В любой и идеальной системе. И вне объекта наблюдения, который лишь использует законы.
Если вы берёте часть чего-то, в детерминированых долях, эквивалентах, вы предопределяете и остальное, доли внутри на основании соразмерностей между ними. Если этого нет - то это аморфная суть. Появилась соразмерность - появилось число и остальное. Составляющие числа. Соразмерность обладающая упорядоченостью породила их. Соразмерность присутствует физически, химически и как угодно, являясь более фундаментальным породителем числа.
Именно этот принцип с использованием фундаментальных знаний я и использовал. Как в примере с вычурными решениями математиков и физиков по отношению к точкам внутри выпуклого многоугольника и вопроса о высоте. Есть более сложные принципы соразмерности чем численные. Как объект и остальное, предопределяющие пречисла. Или операторы. '+', '-' и прочие. Которые более фундаментальны чем числа и предопределяют их суть и границы. Что так просто и логично.
Стена дома формируется силами, колебаниями, игрой меньше и больше детерминированного спектра. Да, она собрана из частей при разделе объекта себя и внешнего мира, где разделение предполагает возникновение или закономерностей или чего угодно другого между. На основании чего стена собирается и на основании каких колебаний, сил, разных операторов, динамики, существует если те достаточно закономерны, равновесны и так далее. Соответствуя соразмерности. КАК И СУЩЕСТВУЕТ ЛЮБОЕ ЧИСЛО. Я ввёл его физический эквивалент буквально. На примере стены. Упрощая изменение. Так числа и используются в данной привязке уже к другим объектам сформированным с испольщованием соразмерностей и не только.
- Теперь подойдём к большой стене где нет одного кирпича. Пусть она бесконечна. Равна ли она той где все кирпичи есть? Ответ очевиден. Как и разница В МИРИАДАХ вещей сопряжённых с наличием или отсутствием этого кирпича в стене.
Борис, и Вам, и гениальным ребятам типа Перельмана, зачастую бегущим слишком быстро, нужно более просто использовать уже развитый интеллект исключая пробелы.
- Ну и как появились числа и математика, и совсем неслучайно, поверьте - я немного приоткрыл дверь к этой интереснейшей теме. Я часто люблю поиграть с границами и даже ошибочными допущениями не только исходя из научного интереса пролегающего в этой теме... Вы найдёте много подобных примеров уже получая ответ на то с чем они связаны с учётом неблагочестивости многих использующих и далеко не Храм Математики. С использованием того что мозг любого живого существа использует соразмерности для существования, создания себя, изменения ФУНДАМЕНТАЛЬНО. 😏 Форма извилин имеет более простые определения и это лишь часть, как и часть смысла нейронных сетей первопричинная, первоздаанная цель которых - определение разнородных соразмерностей и детерминация закономерностей для комфортной жизни сущности в целом... Я приятно удивлю Маска и прочих этим маленьким комментом с уровнем знаний демонстрирующим отличие в порядок ещё к тому порядку который уже есть между нами...
Хищность, Борис, это часть фундаментальных соразмерностей. Она связана с возможностью мозга не только использовать закономерности изучая, а создавать и менять их. Иногда в огромных масштабах...😏🤫
В разных целях. Целительных и наоборот... И это лишь часть...
С НАСТУПИВШИМИ ПРАЗДНИКАМИ И ОТМЕННОГО ЗДОРОВЬЯ!
- С настроением в придачу. 😏
Особенно таким как Гриша. Первоклашки, как Эйнштейн, могут завести далеко, напялив имидж знатоков. 😏
А простых и честных парней ВСЁ ПРОСТО! - 😊
Математика была создана довольно быстро и просто. И также просто и быстро меняется. С некоторыми задержками в силу некоторых фундаментальных изменений меняющих не только мозг... 😏😂😂😂😂🤣🤣🤣🤣
Это отдельная ТРЕПЕТНАЯ тема...
😉🤫 Привет и красоткам! 🤣🤣🤣🤣😂😂😂😂
Скажем так, на числовой прямой "1" больше "0.(9)" ровно на одну материальную точку :)
Ты пытался пошутить? У тебя не получилось. Какое отношение материальная точка имеет к математике?
@@nofuture9450 встречный вопрос: ты вообще знаешь, что такое материальная точка?
я могу поместить между твоей ровно одной "материальной" точкой, и единицей бесконечное количество количество "Материальных точек" Да и что значит материальная точка? Точка размеров так-то не имеет
@@Andrey-oz6qn в этом и суть, между 0,(9) и 1 тоже разницы нет
Если число при зуме точно попало на какое-то число, то вы запрещаете писать дополнительные десятичные знаки. Стало быть не существует числа 1,0 (одна целая ноль десятых). Получается такая запись некорректна или как?
Утверждение "если известный нам алгоритм не приводит к нужному числу, то этого числа не существует" неверно. Нет, не значит. Даже в рамках конструктивной математики следовало бы утверждать для этого "нет ни одного алгоритма, приводящего к данному числу", а не то утверждение, которое прозвучало.
А брать в качестве определение бесконечной десятичной дроби объяснение для пятиклассников - это не математика. Есть же нормальные определения. Тем более для периодических дробей, который сводятся всегда к рациональным числам тут даже не надо применять никакого знания про вещественный числа.
Это видео для масс, поэтому и объяснения для пятиклассников. А что ты ожидал?
@@nofuture9450 Хоть для младенца - определение должно быть строгим и точным. Иначе это не математика.
Опа, это "не математика". А о каком алгоритме идет речь? Не об алгоритме ли записи числа? Или речь идет об алгоритме поиска числа 0,0(1) на прямой? На мой взгляд, высказывать предположение о том, что "использование такого-то определения есть не математика" в силу категоричности выводов такого использования по поводу более изощренных определений, есть факт некорректной манипуляции терминами.
Можно ли рассуждать следующим образом. Любое действительное число есть бесконечная периодическая или непериодическая десятичная дробь. Рассмотрим действительные числа меньшие 1 и не равные 0.(9) тогда рано или поздно в каком-то десятичной разряде будет цифра, отличная от 9. Получается, что 0.(9) больше любого такого действительного числа. Тогда получается, что между числом 0.(9) и 1 не существует других действительных чисел. А так как множество действительных чисел непрерывно, такое может быть лишь в случае, если 1 и 0.(9) одно и то же действительное число.
"тогда рано или поздно в каком-то десятичном разряде будет цифра, отличная от 9" - это ошибочное предположение. Видите ли, бесконечность - это много. Очень много. Более того, бесконечность - это даже не число. Поэтому понятия "рано или поздно" в контексте бесконечности неприменимы, поскольку они предполагают конечность бесконечности, а это абсурд. Такого не произойдет никогда.
Еще одно доказательство с использованием 1/3 забыли(....
Если:1 - 0,(9) = 0,(0) = 0, а если: A - B = 0 => A = B => 1 = 0,(9)
Может я не совсем правильно понял объяснение,но мне кажется числа 0,(9) нет, так как оно нарушает аксиоматику вещественных чисел так как нельзя найти число которое больше 0,(9) и меньше 1
"Может я не совсем правильно понял объяснение,но мне кажется числа 0,(9) нет"
По определению, приведенному в видео, такое обозначение не является правильным ни для какого вещественного числа.
По другим, более интуитивно-понятным определениям, это обозначение ссылается на число 1.
"так как оно нарушает аксиоматику вещественных чисел"
Не нарушает.
"так как нельзя найти число которое больше 0,(9) и меньше 1"
Это означает, что 0,(9) = 1.
Иными словами, десятичная дробь "0,(9)" ссылается на то же число, на которое ссылается десятичная дробь "1".
@@thetaomegatheta тоесть одно и тоже число может иметь различную десятичную запись?
Именно так.
Более того, это верно и во всех других натуральных основаниях.
@@thetaomegathetaпусть f(x) = [x] - функция целой части действительного числа.
Рассмотрим последовательность:
x₁ = 0,9
x₂ = 0,99,
…
xₙ = 0,99…9 - n девяток.
Очевидно, что для любого n: f(xₙ) = 0 - имеем стационарную последовательность, все члены которой равны нулю, поэтому при n → ∞ f(xₙ) → 0, или же [0,(9)] = 0.
Если же мы полагаем, что 0,(9) = 1, то [0,(9)] = [1] = 1.
Прокомментируйте, пожалуйста
@@stasessiya
'поэтому при n → ∞ f(xₙ) → 0, или же [0,(9)] = 0'
Из того, что f(x_n)->0 при n->inf не следует, что [0,(9)] = 0. Мы здесь не с непрерывной функцией работаем.
Для того, чтобы гарантировать истинность тождества lim(f(x)) as x->x_0 = f(x_0), функция f должна быть непрерывной.
EDIT: функция f должна быть непрерывной в точке x_0, если выражаться точнее.
Я так понял, что числа 0,(9) нет, потому что его нельзя найти за конечное число итераций, приближая численную прямую. Но ведь тогда числа пи тоже нет, потому что его тоже нельзя так найти
Периодические десятичные дроби существуют. Как результат деления обыкновенных дробей. Пример: 0.(3) есть тождество с 1/3. И это рациональное число. Числа 0.(9) не существует потому, что не существует такой обыкновенной дроби, результатом деления которой была бы такая бесконечная периодическая десятичная дробь. Логика примерно такая
@@eugengrouk8693 Да, конечно. Я какую-то фигню написал
Если бесконечное десятичное разложение периодично, то это разложение рационального числа
1 рациональное число
Поэтому кажется, что 0.(9) это просто другое представление единички, как, например, 1/3=0.(3)
Разве нет?
Нет, 0,(9) - это предел 1, то есть стремящиеся к 1 число, но не доводящего до него
@@DeMastri боже мой женщина, что ты несёшь? 0,(9) - это бесконечно близкое к 1 число, поэтому оно равно одному. С каждым прибавлением девятки к числу 0,999...9 мы становимся ближе, и пределом этой последовательности является число, большее любого, принадлежащего ей, то есть большее любого числа, меньшего единицы, т к для любого числа меньшего 1 есть число 1-1/10^a, которое больше него, а оно в свою очередь меньше 0,(9). Таким образом, число больше любого, меньшего единицы, а значит оно не меньше единицы
@@DeMastri Если 0.(9) не равно 1, то вы несомненно сможете указать любое, сколь угодно малое число, которое находится между 0.(9) и 1. Правильно? Укажите такое число и вы докажете своё утверждение
@@eugengrouk8693 Туше
Это число Господь оставил себе.
ахахахахахахахаха
Надо четко определить что есть число, а что не число. Если число - это количество чего-либо, то бесконечная дробь - не число, т.к. в реальном мире нет объектов, количество которых ими измеряется. Бесконечные дроби - это результаты сравнения чего-то с чем-то, применение термина "число" к десятичной дроби создает путаницу в голове. Но в теории чисел они тоже называются числами, хотя это совершенно другая хрень.
"... т.к. в реальном мире нет объектов, количество которых ..." А в "идеальном мире"? В сфере идей и математических концепций?
А существует корень из двух яблок в кармане? Теперь корень из двух не число?
@@АлексейТроицкий-б3с Остро! А если два яблока в квадрате - это просто два яблока 🤣 Квадрат ничего не значит!
В реальном мире нет не только корня из 2 яблок. Нет даже -2 яблок. Значит (по такой логике) отрицательных чисел несуществует
@@user-em9md2nv4x отрицательных количеств не существует
Привет от физиков. 0.89 приблизительно равно 1.(если это не КПД, конечно)
9.81 = 10
@@sirius228319 (пи)^2≈10
@@nicolasleman2728 pi^2 == g
@@r-4spberry с=3*10^8
7.5=10
При делении отрезка на 10 равных частей и определении месторасположения точки Вы не раскрываете понятие бесконечности. Из-за этого и возникают недоразумения.
Если единица - число, то бесконечный период - это процесс. И результатом процесса 0,(9) логичным образом является 1.
0,(9) и 1 - две различные записи одного и того же числа. Равно как 2/2 и 1.
Говорить о том, что записать 0,(9) можно, но такого числа не существует, наверное, немного неправильно. 0,(9) существует и в точности равно 1.
Пожалуй числа 0.(9) действительно нет, у меня есть размышления по этому поводу, продолжающие мысль изложенную в ролике. Принципе, десятичная запись числа, как и десятичная бесконечная дробь, это лишь форма записи рациональных чисел. Но форма не должна быть первее смысла, в математике уж точно. Рациональное число задается отношением двух целых чисел: а/b и принципе возможность записать какое то число в виде бесконечной десятичной дроби не говорит о том, что такое число есть. Так вот, если мы хотим получить какое то десятичной число, которое будет иметь n-ый период, например 4, мы должны поделить это число на четыре девятки: 1234/9999 = 0.(1234). Данный факт несложно доказать. Но из этого правила явно видно, что желание получить число 0.(9) не приведет к желаемому результату, потому что 9/9 = 1. Так что 0.(9) не равно 1, такого числа просто нет
@@СемёнСорокин-е7ф 0,(9)=9/9=1 отсюда следует что числа 0,(9) просто нет. Офигеть логика!
@@АндрейП-з8ц Нет такой обыкновенной дроби, результатом которой будет число 0.(9). Впрочем, возможно комментатор ошибся и вы сможете указать такую обыкновенную дробь
@@eugengrouk8693 в предыдущем комментарии я её указал.
Вот! идеальное определение для дифференциала: dx=1-0,(9) =)
можно просто записать 0.(0) :)
@@TheSnos15 0,(0)1
новое слово в математике. ты уверен, что правильно понимаешь запись в скобках?
О БОЖ, СПАСИБО! Я искал ответ на этот вопрос с момента, когда в школе нам дали понятие бесконечных периодических десятичных дробей.
Руслан, как я вас понимаю...если бы евклид знал что его алгоритм будет эффективно использоваться для подобно
доказательства он бы улыбнулся себе в бороду и сказал "О, боги, есть правда на Земле!"
Какой-то тотальный бред произошел в конце. Автор "придумал" алгоритм для поиска десятичной записи числа. Ни слова об существовании и единственности, зато влепил вывод "раз мы не можем получить с помощью этого алгоритма 0.(9), значит число не существует", который может быть сделан лишь при условии существования и единственности. Существование следует из рассуждений автора, а единственность он же и опроверг в первой части ролика.
Если быть откровенным - не ожидал от вас настолько грубой логической ошибки
Ответ на вопрос: ха, да, нет, конечно!
Говорить что числа 0,(9) не существует не верно! Вас же дети могут слушать и запомнят именно так! На самом деле математики договорились считать, что у чисел вида n/2^k (где n, k - целые) есть ровно 2 десятичные записи (см. например Лекции по математическому анализу Архипов, Садовничий, Чубариков, стр. 18). И эти записи равноправны, т. е. число один в десятичном виде может быть записано как 1 или как 0,(9). Дробь 1/4 может быть записана в десятичном виде двумя способами: 0,25 и 0,24(9).
"Числа вида n/2^k" Где ты взял этот бред?
Нет, уважаемый Евгений, все в порядке, тут именно подводится логически к мысли о том, что проблема как раз в поиске точного значение числа 0,(9), прием поиск производится путем поиска точки на прямой. А найти ее нет возможности, поэтому "НЕТ ЧИСЛА 0,(9)". Но опять это только как бы логически обозначено . Все намного сложнее...
Я же написал, где я это взял.
Я так подозреваю, что числа 0,(9) не существует только в десятичной системе счисления...
А вот в НЕХ-числах у 0,(9) должны быть такие же права на существование как и у 0,(1...8). И, заметьте - это одно и то же число! Как 0,(9) может не существовать в десятичной системе и существовать в шестнадцатеричной?
Точно так же в шестнадцатеричной не существует 0.(F)
Извините, но 0,(9) в 16-ричной системе счисления - не то же самое, что 0,(9) в десятичной
0,(9) это точка рядом с выколотой точкой 1
если рядом, значит не равно 1?
абсолютли. это как 1/x определён везде, кроме нуля. при этом в +-0.(0) он уже снова имеет значение
Между ЛЮБЫМИ двумя не равными между собой действительными числами существует бесконечное множество не совпадающих чисел.
@@andrey_bakhmatov Вооооот. А какое число между 0.(9) и 1 ? :) Никакого.
@@Vordikk очевидно, что так. Поэтому 0,(9) и 1 - это разные записи одного и того же числа.
Кажется, что десятичные дроби были до того, как я ушёл учиться в математический класс университетской гимназии. И тогда всё было интуитивно якобы "понятно". Если сейчас у меня спросить, что такое 0.a1a2a3..., где an -- бесконечная последовательность целых чисел из [0; 9], то я смело напишу сумму ряда, и не буду оговариваться, что в этой последовательности сколь угодно далеко должны присутствовать цифры, отличные от 9. Думаю, легко смогу доказать, что она сходится, и девятки на конце мне не помешают. Но вот вопрос, почему для всякого вещественного числа найдется такая последовательность an, меня уже вынудит дробить отрезки. И тут-то мы заметим, что я предложил нифига не биективное отображение, в котором последовательности 1,0,0,... и 0,9,9,... отображаются в одно и то же вещественное число.
Я понимаю, что википедия -- тот ещё базис, но её показания сходятся с моими: десятичная дробь -- это запись вещественного числа в виде последовательности, число вычисляется как сумма соответствующего ряда. Отдельно есть алгоритм, как построить последовательность по числу. Отдельно есть оговорка, что рациональные, у которых лишь двойки и пятёрки в знаменателе, имеют более одного преставления.
Кто, всё-таки курица, а кто -- яйцо? Можно ли говорить, что 0,(9) -- запрещено определением десятичных дробей?
1,(9) тоже не существует ?
Конечно )
А дьявола тоже не существует? (Воланд тм)
Молодец
Очень сомнительные аргументы.
В математике бывают либо верные утверждения, либо неверные. Если для тебя какое-то утверждение "сомнительно", значит, ты просто не врубаешься.
@@leptosomic или аргументатор исходит из плохо определенных предпосылок и/или использует формулировки/свойства которые сами нуждаются в доказательстве
@@leptosomic Причем здесь доказательства? Я говорю о второй части видео с рассуждением о не существовании числа 0,(9). Тут все в договоренностях как понимать число.
Хорошо , а как это на статистике морга можно использовать ?
Мы - Красной Армии бойцы
Числа 0,(9) не существует
В начале были натуральные числа, затем целые, потом рациональные, потом действительные, потом комплексные, теперь не существующие!!
В переводе на английский тут красивая игра слов!
Почему нельзя записать число 0,(9), как "1-0,(0)1"?
я полагаю, что числа 0,(0)1 тоже не существует, зато есть эквивалентное ему число 0 )))
Ляшки-мурашки, я пересмотрел свою догадку с другой стороны и ведь выходит, что 0,(9)+0,(1)=1,(1)=1+0,(1) - опять же 0,(9) приравнивается к 1
@@Radik_100 ну да добавив немного к 0,(9) получим 1. это логично!
Тут вообще все сильно зависит от аксиоматики. Важный момент, что исходная задач эквивалентна тому, что требуется доказать, что lim(A + o(n))=A -- этот предел в точности равен A, а не бесконечно стремится или находится в какой-то бесконечно близкой окрестности от A. (Именно доказательство того, что предел точно равен)
Без этого доказательства первые 2 доказательства достаточно бессмысленны
Во-первых доказательство на основе ряда должно быть на основе работы с частичными суммами, после которого должен быть предельный переход. Но в предельном переходе мы снова получим изначальное lim(A + o(n))=A
Если мы идём от прогрессии, то там также получим предельный переход и тот же самый предел)
Получается, что все сводится к тому, с чего и начиналось)
Вообще правильнее будет сказать, что 0.(9) = 1 по следствию из аксиомы Архимеда, так как на области действительных чисел не могут существовать бесконечно малые величины и любые 2 бесконечно близких числа - это одно и то же число)
А по поводу концовки - существует ли 0.(9) или нет на множестве действительных чисел и равно ли оно 1 - это очень зависит от нашей аксиоматики и того, что мы считаем действительными числами
равзе предел вообще когда-нибудь куда-нибудь стремится?
@@qts зависит от того, что мы понимаем под этими словами.
Я имею под понятием "предел стремится к A" понимаю определение предела в смысле Коши, но с оговоркой, где A - это множество точек в бескончено малой окрестности от значения предела. То есть до того, как мы доказали, что все это множество на множестве вещественных чисел - в точности одна точка
Но, вообще говоря, я упоминал это с отрицанием "а не")
Я что-то не понимаю, почему мы просто не представили его в виде рациональной дроби? Разве это не для всех периодических дробей возможно?
А вообще да, у меня не получилось. Даже если попробовать представить как 0,(3) + 0,(6), то получится 1/3 + 2/3.. ничего себе парадокс)
Борис, добрый день, очень классный канал, можете пожалуйста просветить ликбез: если бы мы не прибегали к десятичной записи, то смогли бы вы вообще познать иррациональные числа? Получается, что мы их могли познать, только перейдя в десятичную запись, иначе как бы мы их узнали, открыли, и так иначе, как происходил этот исторический момент, так странно выходит, что если бы мы не начали записывать числа в десятичной записи, то иррациональные числа мы бы так и не узнали? (Хотя как мне кажется их придумали ради удобства записи, а так оказалось, что они описывают иррациональные числа, но это имхо)
Иррациональные числа возникают и без десятичной системы счисления, корень из двух, например. Поищите доказательство его иррациональности, десятичная запись там не причем.
Иррациональность не связана со системой счисления. По простому можно сказать так: существуют числа, которые нельзя записать в виде дроби. Другими словами, никакой дробью, в любой системе счисления, невозможно записать такое число. С поправкой, что система счисления не основана на этом самом иррациональном числе 🤣. Математики могут и в такие извращения, да. Типа Пи-еричная система счисления. Там Пи записывается прекрасно, выглядит как 1 😈
если нет числа 0,(9), то нет числа Пи
то есть нерациональных чисел не существует?
думаю вы оговорились
нерациональные числа есть, Пи -- иррациональное число, а 0,(9) не подходит под формулировку иррационального числа, и вообще под формулировку числа не подходит. Подходит под формулировку последовательности чисел.
Это как бы на любителя...Есть, нет, как хочешь... Дело в том, что заострять внимание именно на этом на последнем факте практического смысла нет. Ведь есть все предыдущие 20 минутные выкладки, которые вполне самодостаточны. Но! Опять же охота все-таки понять до конца суть вопроса. А для этого надо отвлечься от того, что известно об иррациональных числах и тут конечно придет на помощь этот небольшой фактик про отсутствие числа. Это "как сказать" визуальный способ отображения фунции y=x, где x равно конкретному числу между 0,(9) и 1. Что касается числа Пи, то думаю тут вы оговорились...
@@ВалерШах А почему вы утверждаете что оно не подходит под формулировку? 0,(9) - это как бы некий способ наглядно отобразить число, которое вызывает определенные сомнения в точности расчетов. Чем не иррациональность?
Пи находится между 3 и 4 и не является ни одним из них, то же самое с 3,1 и 3,2, 3,14 и 3,15 и т.д. Значит существует. Напоминаю основанием для несуществования является равенство с одним из чисел.
Число 0.(9) - рациональное. Исходя из определения и записи. Бесконечная десятичная дробь. Просто оно не существует 🤣 Потому как тождественно равно 1.
Математика математикой, но согласитесь, что у каждой величины есть половина, если есть сама величина.....дальше квантовый мир похоже)))
Сколько энергии/времени надо чтобы сдвинуть бесконечный ряд атомов на 1 позицию? Как легко вы умножим поделим а в физической интерпретации это невозможно
Пользуясь логикой в первой половине видео люди приходят к выводу, что бесконечность = 1/12. Это противоречие и говорит о том, что такая операция умножения и вычитания бесконечных рядов некорректна. (Доказательство от противоположного)
Есть крайне важный момент, который понятен почти всем программистам, но неочевиден математикам, мало работающим с булевой алгеброй: если одно из чисел не существует (не определено и пр.) то результат сравнения НЕ ложь, а неопределенность! Это очень сложно объяснить, но если писать много программ, которые опираются на результат сравнения двух объектов, то расценивание "(не существует) как не равно единице" ведёт к ошибкам в работе программы. Возможно как-нибудь дойдут руки, накалякаю видео на эту тему.
Да это просто жопа...
Наткнулся на этот вопрос тем что решал уравнение 3^x+3^x+3^x=1
x=-1, потом решил подставить и получается что 0,(9)=1, решил проверить это в интернете
Полагаю, 10х-х=9.(9)-0.(9). Это не совсем 9х=9. Так как вычитая бесконечное "число" после запятой, не получить определенного числа...
кажется, что просто все ломает понятие бесконечности, конечно, кажется, что 0,999...не 1, но это так, если мы остановимся записывать 9ки, но если мы будем продолжать записывать бесконечно, то ряд сойдеется к 1, поэтому это работает, также как работает ряд 1/2+1/4+1/8+....если остановиться, то будет всегда чуть меньше 1, но если ряд бесконечен, то это 1. такж как, если бесконечно складывать 1+2+3+4+...., то будет -1/12, но если остановиться, то будет гигантское число