The modular inverse via Gauss not Euclid

Поделиться
HTML-код
  • Опубликовано: 25 янв 2025

Комментарии • 4

  • @ivolol
    @ivolol 2 года назад +2

    if in each step instead of collecting bi, we just multiply the second paired value to a result that starts at 1 (mod p), you can write this as the following python:
    def mod_inv(a, p):
    res = 1
    while a != 1:
    q, r = p // a, p % a
    if r < a - r:
    a, res = r, (res * -q) % p
    else:
    a, res = a - r, (res * (q + 1)) % p
    return res

    • @innovationsanonymous8841
      @innovationsanonymous8841 8 месяцев назад

      Combining her notes from the previous video:
      ```
      def mod_inv(a, p):
      _, x, _ = egcd(a, p)
      return (x % p + p) % p
      def egcd(a, b):
      if is_prime(b): # AKS ?
      return egcd_reference(a, b)
      return egcd_gauss(a, b)
      def egcd_gauss(a, b):
      x, y, u, v = 0, 1, 1, 0
      while a != 0:
      q1, r1 = b // a, b % a
      q2, r2 = q1 + 1, a - r1
      if r1

  • @Kaepsele337
    @Kaepsele337 3 года назад +2

    Does this work for any finite field?

    • @ProofofConceptMath
      @ProofofConceptMath  3 года назад +2

      Very interesting question! You could imitate the formalism using polynomials instead of integers (the usual model of finite fields). I think this works fine. It's a bit more work than the usual Euclidean algorithm, because you keep around p (which is now a big polynomial), instead of swapping it out for smaller things, like in the usual Euclidean algorithm. (In the prime modulus case also, this algorithm is slower than the euclidean one -- it's of more interest pedagogically than practically.)