Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
Excellent ❤
Thank you
The secound solution is the best.
Yes, it's short and straightforward
It is much easier in following way.27^x+27^x+27^x=2727^x(1+1+1)=2727^x(3)=2727^x=27/327^x=9=3^2(3^3)^x=3^23^3x=3^2BASE SAME , POWER MUST BE SAME3X=2X=2/3 >>> Final Answer.
On point
\begin{bmatrix} 27^{ x } + 27^{ x } + 27^{ x } = 27 \\ 27^{ x } ( 1 + 1 + 1 ) = 27 \\ 27^{ x } ( 3 ) = 27 \\ 27^{ x } = \frac{ 27 }{ 3 } = 9 = 3^{ 2 } \\ ( 3^{ 3 } ) ^{ x } = 3^{ 2 } \\ 3^{ 3x } = 3^{ 2 } \\ \begin{bmatrix} bas \variable {e} - sam \variable {e} \\ 3x = 2 \\ x = \frac{ 2 }{ 3 } \\ \text{□} \\ \text{□} \end{bmatrix} \end{bmatrix} Final Answer is 2/3. it is much easier
Excellent ❤
Thank you
The secound solution is the best.
Yes, it's short and straightforward
It is much easier in following way.
27^x+27^x+27^x=27
27^x(1+1+1)=27
27^x(3)=27
27^x=27/3
27^x=9=3^2
(3^3)^x=3^2
3^3x=3^2
BASE SAME , POWER MUST BE SAME
3X=2
X=2/3 >>> Final Answer.
On point
\begin{bmatrix} 27^{ x } + 27^{ x } + 27^{ x } = 27 \\ 27^{ x } ( 1 + 1 + 1 ) = 27 \\ 27^{ x } ( 3 ) = 27 \\ 27^{ x } = \frac{ 27 }{ 3 } = 9 = 3^{ 2 } \\ ( 3^{ 3 } ) ^{ x } = 3^{ 2 } \\ 3^{ 3x } = 3^{ 2 } \\ \begin{bmatrix} bas \variable {e} - sam \variable {e} \\ 3x = 2 \\ x = \frac{ 2 }{ 3 } \\ \text{□} \\ \text{□} \end{bmatrix} \end{bmatrix} Final Answer is 2/3. it is much easier
Thank you