Unlocking The Secrets Of Complex Analysis: Dive Into Taylor's & Laurent's Series

Поделиться
HTML-код
  • Опубликовано: 13 дек 2024

Комментарии • 24

  • @sameershaikh-k9z
    @sameershaikh-k9z 7 месяцев назад +7

    Sir aapki class chahe paid course ho ya RUclips ki class hr class me kuch nya hi milta hai seekhne ko ❤ thank you so much sir 🙏 for thus amazing class
    Mere Bahut se doubts the Taylor aur Laurent series ko lekr sb short out ho gye
    Aur hmko Cauchy integral formula exact nhi pta tha use kaise krte hain Laurent me
    Mera Sara doubt clear ho gya sir
    Thank you so much Sir ❤

  • @nehadiwakar6927
    @nehadiwakar6927 8 месяцев назад +4

    Very nice explanation 👌👌thanks a lot sir ...

  • @rituraj9301
    @rituraj9301 8 месяцев назад +4

    Nice explanation

  • @kulsoomarashid4266
    @kulsoomarashid4266 5 месяцев назад

    Sir at 1:20, Q4, what is the correct option? Since limit z tending to ♾️ exists finitely, it means f(z)/z^n=a, a constant which implies that f(z)=az^n, similarly g(z) = b z^n. So which means option 3 is correct. Kindly correct me if i am wrong. Thank u

    • @SBTechMath
      @SBTechMath  5 месяцев назад

      Limit is 1 then a=b=1

    • @SBTechMath
      @SBTechMath  5 месяцев назад

      The 2nd thing, polynomial can have less degree term also

    • @kulsoomarashid4266
      @kulsoomarashid4266 5 месяцев назад

      Ok got it thank u​@@SBTechMath

    • @kulsoomarashid4266
      @kulsoomarashid4266 5 месяцев назад

      ​​@@SBTechMathhow is that possible here in this case ? Like if we take h(z)= f(z)/z^n, then limit z tending to infinity h(z) =1, and hence exists finitely, which means h(z) has removable singularity at ♾️, which further implies that h(z) is a constant because only constant functions have removable singularity at infinity. So taking h(z) = constant, we get f(z)= az^n=z^n. How can we here get, less degree terms ?

    • @SBTechMath
      @SBTechMath  5 месяцев назад

      @@kulsoomarashid4266 see the explanation. In text you can discuss all the things. Think about Taylor series.

  • @SaloniJain-p1u
    @SaloniJain-p1u Месяц назад

    Sir aapne bola tha sinz/z^2 ke example mai ki hum usme direct cauchy integral formula mhi lga sakte hai kyunki function analytic hai annular region mai to fir humne jo a_0,a_1 nikala tha usme fir kyu lagaya cauchy integral formula? Plz sir bta dijiye bhut confusion ho rha hai isme

    • @SBTechMath
      @SBTechMath  Месяц назад

      Time??

    • @SaloniJain-p1u
      @SaloniJain-p1u Месяц назад

      @@SBTechMath sir aapne yaha per btaya tha 33:53, 40:00 , and 46:35 yaha value nikali hai

    • @SBTechMath
      @SBTechMath  Месяц назад

      @@SaloniJain-p1uyou didn’t notice one thing ☹️ when you are finding a0 and a1 then function is f(z)=sinz / z^2 and when you are solving using CIF then the analytic function in the contour is not f(z).
      Watch it again with slow speed and find your mistakes.

    • @SaloniJain-p1u
      @SaloniJain-p1u Месяц назад +1

      @@SBTechMath sorry sir , and thankyou so much sir 😊 I found my sily mistake!🥲

  • @dreamgirl61196
    @dreamgirl61196 8 месяцев назад +1

    Nice class sir.
    Sir i have a doubt, does analytic continuation is possible for the function 1/z-1 beyond the boundary |z|=1?? does there exist series expansion for this function if boundary contains singularity?

    • @SBTechMath
      @SBTechMath  8 месяцев назад

      no

    • @dreamgirl61196
      @dreamgirl61196 8 месяцев назад +1

      @@SBTechMath Thank you sir. If possible, please discuss this topic analytic continuation in more detail🙏🏻

  • @14-nasirhusain83
    @14-nasirhusain83 6 месяцев назад

    Sir in last question...f(z) has two poles 1 and 2
    If we expand by laurants expansion....why there comes infinite terms of 1/z
    Pole me to only finite terms hote hai of 1/z???

    • @SBTechMath
      @SBTechMath  6 месяцев назад

      When it occurs think about this

    • @14-nasirhusain83
      @14-nasirhusain83 6 месяцев назад

      @@SBTechMath infinite terms of 1/z are when there is essential singularity...
      But here I don't know why bze f=1/(z-1)(z-2)...it has poles

  • @TanishaGarg-l9c
    @TanishaGarg-l9c 5 месяцев назад

    sir question 4 me option 1 kyo nahi ho sakta . hama par bhi to hame negative terms finite mil rahi hai

  • @RanSingh-x3k
    @RanSingh-x3k 8 месяцев назад +4

    Sir voice bahut km aati hai please improve sir 🙏

    • @SBTechMath
      @SBTechMath  8 месяцев назад +1

      Voice is Upto the mark in this video.

  • @Learnmathematics-k5o
    @Learnmathematics-k5o 7 месяцев назад

    Sir please residue pr bhi lecture daliye