Mexico | A Nice Algebra Problem | Math Olympiad

Поделиться
HTML-код
  • Опубликовано: 3 ноя 2024

Комментарии • 8

  • @MrPoornakumar
    @MrPoornakumar 5 дней назад +2

    Brilliant

    • @SALogics
      @SALogics  5 дней назад +1

      Very nice! ❤

  • @sy8146
    @sy8146 5 дней назад +2

    Thank you for explaining. ・・・ There are infinite solutions.
    (x, y) = (66, 1), (√69, 4), (74^(1/3), 9), (3, 16), (90^(1/5), 25), ・・・ [and, (-√69, 4), (-3, 16), ・・・ ]

    • @SALogics
      @SALogics  5 дней назад +1

      You are right! ❤

  • @gaiatetuya92
    @gaiatetuya92 5 дней назад +1

    x、yに制限を付けないと与式を満たす組は無限にあることになる。xが負でも成り立つ組は無限にある。

    • @SALogics
      @SALogics  5 дней назад +1

      あなたは正しいです、親愛なる ❤

  • @walterwen2975
    @walterwen2975 5 дней назад +1

    Mexico, Math Olympiad: x^√y - y = 65; x, y =?
    x^√y > y > 65 or x^√y > 65 > y > 0, x, y ϵ R⁺; 65 = (1)(65) = (5)(13)
    x^√y - y = (1)(65) = (33 - 32)(33 + 32) = 33^2 - 32^2 = 33^(32/16) - 32^2
    = (¹⁶√33)^√(32^2) - 32^2; x = ¹⁶√33, y = 32^2
    x^√y - y = (5)(13) = (9 - 4)(9 + 4) = 9^2 - 4^2 = 3^4 - 16 = 3^√16 - 16; x = 3, y = 16
    Answer check:
    x = ¹⁶√33, y = 32^2: x^√y - y = 65; Confirmed as shown
    x = 3, y = 16: x^√y - y = 65; Confirmed as shown
    Final answer:
    x = ¹⁶√33 = 1.244, y = 32^2 = 1024 or x = 3, y = 16
    The calculation was achieved on a smartphone with a standard calculator app
    There are infinite solutions for this equation as @sy8246 has pointed out!
    The restrictions of “x, y ϵ R⁺” may be helpful in simplifying the math work.

    • @SALogics
      @SALogics  5 дней назад +1

      Very nice trick! I really appreciate that ❤