Method 2 - Leave One Out Cross Validation

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 24

  • @patricksilva2345
    @patricksilva2345 6 лет назад +12

    Congrats! This is one of the best video explaining this concept, practically! Thank you! Keep doing this kind of a great job!

    • @IQmates
      @IQmates  5 лет назад

      Patrick Silva awesome to hear that! I’ll keep more coming. Had to take a hiatus but more are on their way including Deep Learning ones 😊

  • @Mohammed-yl5wr
    @Mohammed-yl5wr 2 года назад +1

    The main point from the LOOCV in penalized regression is to pick the appropriate penalty value. Say you create a grid values for a range of penalty values and apply the LOOCV method for each of the penalty values then pick the one that minimizes this MSE since it concentrates on the prediction error.

  • @nilanjannandy7316
    @nilanjannandy7316 4 года назад

    Can you help me understand how predicted values are calculated for linear regression

  • @tallon3925
    @tallon3925 Год назад

    Incredible explanation!

  • @reginageorge8608
    @reginageorge8608 2 года назад

    From now on, RUclips is my university

  • @glennclaudio1562
    @glennclaudio1562 3 года назад

    Nice, you have a clear explanation about the concept

    • @IQmates
      @IQmates  3 года назад

      Thanks for the positive feedback Glenn. All the best!

  • @finnberuldsen4798
    @finnberuldsen4798 3 года назад +1

    Very helpful, thank you!

  • @madiyarsuleimen9666
    @madiyarsuleimen9666 2 года назад

    Good

  • @ghadaalmousa9248
    @ghadaalmousa9248 4 года назад

    What is the mean squared leave one out cross validation error of using linear regression ? (i.e. the mode is y = β0 + β1x + noise)
    x=(0,2,3)
    y=(2,2,1)
    Answer: (22+(2/3)2+12 )/3= 49/27
    Can any one explain how ew got this answer?

  • @modx5534
    @modx5534 2 года назад

    Very well explained!

  • @ebdulmomenahmed5972
    @ebdulmomenahmed5972 4 года назад +2

    nice video mate, thanks

    • @IQmates
      @IQmates  4 года назад +1

      Thanks for the compliment Moamen. I am uploading more to my new playlist on Unsupervised Learning. Please share with your friends.

    • @ghadaalmousa9248
      @ghadaalmousa9248 4 года назад

      What is the mean squared leave one out cross validation error of using linear regression ? (i.e. the mode is y = β0 + β1x + noise)
      x=(0,2,3)
      y=(2,2,1)
      Answer: (22+(2/3)2+12 )/3= 49/27

  • @lehlohonolopapo888
    @lehlohonolopapo888 5 лет назад +1

    You sound South African. Are you from SA?

    • @IQmates
      @IQmates  5 лет назад +2

      Hi lehlohonolo Papo . I’m originally from Zimbabwe but studied at Wits Uni for my degree and postgrad and I’m working in SA 😊

    • @lehlohonolopapo888
      @lehlohonolopapo888 5 лет назад +1

      @@IQmates nice. Good tutorial mate, i understand the concept, i wanted to know the difference between LOOCV and k-fold, i got it now. I'm studying at University of Western Cape btw, final year. So yes ML 👍👍

    • @IQmates
      @IQmates  5 лет назад +2

      @@lehlohonolopapo888 Great! I'm glad you understand the concept. Please share the videos with your peers. It's motivating to know they are relevant to what you guys are studying :)

    • @lehlohonolopapo888
      @lehlohonolopapo888 5 лет назад +1

      @@IQmates I'll do so.

  • @portiaawuah1694
    @portiaawuah1694 3 года назад

    Thank you soooo much

  • @subhra123100
    @subhra123100 4 года назад

    Hi! this is an amazing explanation. But I need help on an assignment desperately. And it is exactly on these lines. How can I ask you the question?

  • @hanan_almulla
    @hanan_almulla 3 года назад

    Thank you ! :)

  • @praveenagarwal3182
    @praveenagarwal3182 4 года назад

    F