Von Neumann Stability Analysis of the FTCS Scheme | Lecture 70 | Numerical Methods for Engineers

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии • 27

  • @utkansivrikaya577
    @utkansivrikaya577 2 года назад +5

    The best explanation I have ever seen on the Internet about the Von Neumann Stability condition. Thank you Sir ! Best Regards

  • @NurafzaMatali
    @NurafzaMatali 2 года назад +2

    Awesome. I'm interested to know a stability analysis of the finite difference scheme for solving the two-dimensional elliptic PDE.

  • @kovidasurampudi1411
    @kovidasurampudi1411 Год назад

    Very clear in understanding the concept.

  • @sabyasachimukherjee5908
    @sabyasachimukherjee5908 3 года назад

    You are awesome. The way you explain everything is superb.

  • @jawaharfathima
    @jawaharfathima Год назад

    Great video. How do we estimate the stable timestep for a heat equation with a constant source term?

  • @Urururopa
    @Urururopa 3 года назад

    Very nicely explained!

  • @LOKI123ification
    @LOKI123ification 2 года назад

    RUclips is a bit creepy, At the moment I'm writing/building a solver from scratch, and I did know the basic problem and today I got the suggestion from youtube :) . But thank you for your explanation. So easy to understand, that it seams obvious. Thank you

  • @julienmans3359
    @julienmans3359 Год назад +1

    In the subtitles "ansatz" is spelled ''onsets"

  • @bhoopendragupta4782
    @bhoopendragupta4782 2 года назад

    nicely explained

  • @NadiaMorroco
    @NadiaMorroco Год назад

    How we find stability of 3D fractional diffusion equation and also convergence plz help

  • @jonasschafer6794
    @jonasschafer6794 9 месяцев назад

    For xi = 1 or -1 we are at the boundary of stability. Is it desirable for some reason for xi to be a value closer to 0 or is any value | xi| < 1 "equally good"?
    Love your videos by the way, fantastic explanation!

  • @pipertripp
    @pipertripp 3 года назад +1

    After you choose the ansatz, it all makes sense, but where on Earth does that ansatz come from? Also, thanks for this video. The stability analysis was really cool and missing from my text, so this was a nice supplement.

    • @yiwang3437
      @yiwang3437 3 года назад

      the Ansatz there is a single Fourier mode.

    • @its-silachi
      @its-silachi 3 года назад +1

      its fluctuation of error as function of x, expressed by a fourier series

    • @Snow-tm9ic
      @Snow-tm9ic 2 года назад

      @@its-silachi This is an elliptic equation so it will have a bounded solution thus he could represent it in terms of fourier series. But if the equation is a wave equation (hyperbolic) then how to get this stability operator???

  • @alirezasoleimani2524
    @alirezasoleimani2524 2 года назад

    Wunderbare Erklärung

  • @mohammadghani1379
    @mohammadghani1379 3 года назад

    Nice, by the way, Does Von Neumann stability still work for the STEADY STATE?

  • @katzil1771
    @katzil1771 Год назад

    Why is it called explicit (scheme) if you need the step before?

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  Год назад

      You can plug in the solution for the previous step to immediately get the next step. Implicit methods need to solve a matrix equation.

  • @jacobspark1863
    @jacobspark1863 2 года назад

    Brilliant

  • @martinperu6207
    @martinperu6207 3 года назад

    Thank.. Please could you explain MOL method?

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  3 года назад +2

      MOL = Method of Lines. Discretize spatial variable and solve a large system of odes. Haha, explained.

  • @sashacurcic1719
    @sashacurcic1719 2 года назад

    How would one apply this to RK2 and RK4 schemes?

    • @aadiduggal1860
      @aadiduggal1860 Год назад +1

      pretty sure this is used for PDEs not ODEs

    • @sashacurcic1719
      @sashacurcic1719 Год назад

      @@aadiduggal1860 You can use Runge Kutta's for PDEs or ODEs. I don't understand your point.

  • @zizizouzou4316
    @zizizouzou4316 3 года назад

    Bonjour monsieur, s'il vous plaît aidez-moi à stabilité de Fourier

  • @zizizouzou4316
    @zizizouzou4316 3 года назад

    Good morning sùr please help me in stabilite