DESTROYING a MONSTER integral using Feynman's technique

Поделиться
HTML-код
  • Опубликовано: 14 дек 2024

Комментарии • 63

  • @ostdog9385
    @ostdog9385 11 месяцев назад +56

    Pi^2/6 makes me think theres gotta be a way using series to turn it into basel somehow and now i need to find it

  • @DDroog-eq7tw
    @DDroog-eq7tw 11 месяцев назад +17

    I tried it before watching. If you want to solve it on hard mode, introduce α in the ln with 2+αx only in the numerator (so I(-1) = 0) then try to solve it. I went through two separate Feynman techniques then did an integration by parts to get dialogarithms before I found an error in the beginning of my work, where i forgot to divide by two. I don't want to re-do most of the work, but it seems possible that way.

    • @maths_505
      @maths_505  11 месяцев назад +2

      Wow now that's some roughhousing😂

  • @smsofisami724
    @smsofisami724 11 месяцев назад +8

    Bro solved a monster integral and when he had to evaluate 1/2-1/3 he said this is the hard part 😭💀

  • @GearsScrewlose
    @GearsScrewlose 11 месяцев назад +8

    If you rewrite ln[(2+x)/(2-x)] as a series combine and switch them sums, we can rewrite the integral as the beta function.

  • @jieyuenlee1758
    @jieyuenlee1758 9 месяцев назад

    1:10 when alpha=inf it approch zero
    Hence you can straight away intergrate the whole thing from [2,inf)11:43

  • @srinjansingharoy202
    @srinjansingharoy202 11 месяцев назад +9

    the "constant of integration C" line made me piss my trousers

    • @maths_505
      @maths_505  11 месяцев назад +4

      😂😂😂

  • @thierrytitou3709
    @thierrytitou3709 11 месяцев назад +3

    Yes, indeed, write ln[(2+x)/(2-x)] = ln(1+ x/2) - ln(1-x/2) = 2*argth(x/2) and expand those ln's in taylor series as for 0

  • @pandavroomvroom
    @pandavroomvroom 11 месяцев назад +2

    *uses the overpowered technique of looking up a table of antiderivatives*

  • @MrWael1970
    @MrWael1970 11 месяцев назад

    Very nice solution. Thank you

  • @jieyuenlee1758
    @jieyuenlee1758 9 месяцев назад

    12:42 Fourrier series:
    1/1²+1/2²+1/3²+1/4²+....=pi²/6

  • @Kurama.00
    @Kurama.00 10 месяцев назад

    8:58 He got me here

  • @MatthisDayer
    @MatthisDayer 11 месяцев назад +2

    can you do a follow up video on this very modern technique at 9:20?

    • @blibilb
      @blibilb 11 месяцев назад

      looking up the table on anti derivatives? its basically a result you have to keep in mind like how integral of arcsin x is 1/sqrt(1-x^2)

    • @aravindakannank.s.
      @aravindakannank.s. 11 месяцев назад +2

      ​@@blibilbbro he is joking
      don't u get it
      that he understands all the other awesome tricks but not this single step😂😂😂

  • @holyshit922
    @holyshit922 11 месяцев назад +2

    Euler substitution
    sqrt(1-x^2) = 1 - xt
    We will have
    Int(ln((t^2+t+1)/(t^2-t+1))/t,t=0..1)
    Integration by parts with
    u = ln((t^2+t+1)/(t^2-t+1)) dv = 1/t dt
    We have integral
    2Int(ln(t)*(t^2-1)/(t^4+t^2+1),t=0..1)
    Expand rational factor
    2Int(ln(t)*(t^2-1)^2/((t^4+t^2+1)(t^2-1)),t=0..1)
    2Int((t^4-2t^2+1)*ln(t)/(t^6-1),t=0..1)
    =-2Int((t^4-2t^2+1)*ln(t)/(1-t^6),t=0..1)
    Now we expand 1/(1-t^6) as geometric series with common ratio t^6
    -2(Int(sum(t^(6n+4)*ln(t),n=0..infinity) -sum(t^(6n+2)*ln(t),n=0..infinity) + sum(t^(6n)*ln(t),n=0..infinity) ,t=0..1)
    Here we change order of integration and summation
    then we calculate integrals by parts
    Finally we will have three sums to evaluate
    -2(sum(-1/(6n+1)^2,n=0..infinity)-2*sum(-1/(6n+3)^2,n=0..infinity)+sum(-1/(6n+5)^2,n=0..infinity))
    -2(sum(-1/(6n+1)^2,n=0..infinity)+sum(-1/(6n+3)^2,n=0..infinity)+sum(-1/(6n+5)^2,n=0..infinity) - 3sum(-1/(6n+3)^2,n=0..infinity))
    -2(sum(-1/(2n+1)^2,n=0..infinity)-1/3sum(-1/(2n+1)^2,n=0..infinity))
    2(sum(1/(2n+1)^2,n=0..infinity)-1/3sum(1/(2n+1)^2,n=0..infinity))
    4/3*sum(1/(2n+1)^2,n=0..infinity)=4/3*(sum(1/(n+1)^2,n=0..infinity) - sum(1/(4(n+1)^2),n=0..infinity))
    4/3*sum(1/(2n+1)^2,n=0..infinity)=4/3*(sum(1/(n+1)^2,n=0..infinity) - 1/4*sum(1/(n+1)^2,n=0..infinity))
    4/3*sum(1/(2n+1)^2,n=0..infinity)=4/3*3/4*sum(1/(n+1)^2,n=0..infinity)
    4/3*sum(1/(2n+1)^2,n=0..infinity)=sum(1/n^2,n=1..infinity)
    =π^2/6

  • @anupamamehra6068
    @anupamamehra6068 11 месяцев назад +1

    use the fact that integral from 0 to 1 of f(x) = integral from 0 to 1 of f(1-x) to get 1-x in denominator - then use the series expansion of 1/1-x and maybe we get something

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 месяцев назад

    1operazione..x=sinθ...{...ln (2+sinθ/2-sinθ)*1/sinθ..}….uso feyman con I(a)={...2-asinθ/2+asinθ...}..I(0)=0,I=I(1)...risulta I'(a)=π/√(4-a^2),I=πarcsin(a/2)...I=I(1)=πarcsin(1/2)=π^2/6

  • @superfilmologer
    @superfilmologer 11 месяцев назад

    isnt there a mistake at 5:30? why do we just assume we can distribute a sec^2 over (cos^2 +a^2-1)?

  • @ericthegreat7805
    @ericthegreat7805 11 месяцев назад

    so does I(z) = -pi*sec-1(z) + pi^2/2 = Z(z) for any complex z?

  • @maxvangulik1988
    @maxvangulik1988 11 месяцев назад +3

    y=ln((1+x)/(1-x))
    e^y=(1+x)/(1-x)
    e^y-xe^y=1+x
    (1+e^y)x+(1-e^y)=0
    x=(e^y-1)/(e^y+1)
    x=tanh(y/2)
    y=2artanh(x)
    ln((1+x)/(1-x))=2artanh(x)
    not sure what you can do with this but it's something i noticed

  • @HaliPuppeh
    @HaliPuppeh 11 месяцев назад

    I think I missed the part of the solution where you got the cosecant and cotangent functions in as well.

  • @aravindakannank.s.
    @aravindakannank.s. 11 месяцев назад +2

    9:20 my mind blown bro after seeing the trick of looking up anti derivatives
    which is not happened quite a while
    pardon me not quite almost never (except some differential equation videos)😅
    😊😂😂

  • @threepointone415
    @threepointone415 11 месяцев назад

    Yes, ζ(s) = π^2 /2 - π arcsec(s)

  • @vcvartak7111
    @vcvartak7111 10 месяцев назад

    I went through all your integration problems but first time I understood it

  • @DD-ce4nd
    @DD-ce4nd 11 месяцев назад

    Additional observation: when we take the integration limits from 1 to 2 we get -5/3*i*Gieseking's constant.

  • @trelosyiaellinika
    @trelosyiaellinika 7 месяцев назад

    Real beauty!

  • @sidhantmohanty5256
    @sidhantmohanty5256 11 месяцев назад

    Bro can you try proving this one? integral 0 to pi arctan(ln(sinx)/x) dx = - pi*arctan[2ln(2)/pi]

  • @sadi_supercell2132
    @sadi_supercell2132 11 месяцев назад

    Btw do i always use lim as parameter goes to infinity for the part of the function where i inserted parameter or i can use whatever number for example limit as parameter goes to 0,1,-2... edit: when i want to find the missing constant c

    • @zunaidparker
      @zunaidparker 11 месяцев назад

      You should use any "convenient" number for that purpose. In this case it happened to be infinity, which isn't a number you can just substitute in so you have to consider it as a limit.

    • @sadi_supercell2132
      @sadi_supercell2132 11 месяцев назад

      @@zunaidparkerbut here is the problem , which number i substitute in ln(a(x^2+1)) so i get the 0 for the limit

    • @sadi_supercell2132
      @sadi_supercell2132 11 месяцев назад

      @@zunaidparker maybe a=1 for ln(a) + ln(x^2+1) but what do i do for ln(x^2+1)

    • @zunaidparker
      @zunaidparker 11 месяцев назад

      @@sadi_supercell2132 if you're left with an expression like that it means that you didn't choose a good parameterization to begin with. You should always choose where to insert the "a" to end up with an expression that is "nice".

    • @sadi_supercell2132
      @sadi_supercell2132 11 месяцев назад

      @@zunaidparker integral from 0 to infinity of ln(x^2+1)/x^2+1

  • @comdo777
    @comdo777 11 месяцев назад

    asnwer=1+2 /1-/2

  • @BladimirRemon
    @BladimirRemon 11 месяцев назад

    Ohh My god!😮

  • @sadi_supercell2132
    @sadi_supercell2132 11 месяцев назад +1

    Beautifull

  • @oatq175
    @oatq175 11 месяцев назад

    so coooool!

  • @ThanhNhan_GiaSu234
    @ThanhNhan_GiaSu234 11 месяцев назад

    ❤❤❤

  • @xleph2525
    @xleph2525 9 месяцев назад

    Bro why do some of your video titles read like they're from the hub.