Phase space & Liouville's Theorem

Поделиться
HTML-код
  • Опубликовано: 1 фев 2025

Комментарии • 10

  • @sdmcal4
    @sdmcal4 Год назад +6

    ung phys student here and I got your videos recommended to me from GT, I love the way you present this thank you for the effort you put in these videos.

  • @MGB-wz3jz
    @MGB-wz3jz 8 месяцев назад +10

    One point of critique, you show a phase space plot with spiralling motion. However, Hamiltonian systems never have a sink or source at a singularity. Great video nonetheless!

  • @osmanhussein3893
    @osmanhussein3893 8 месяцев назад +2

    Wonderlful explanation. Very much appreciated!

  • @rishecks
    @rishecks Месяц назад

    so well constructed and so well spoken!! tysm

  • @kierkegaard54
    @kierkegaard54 7 месяцев назад +4

    The "proof" given at 6:36 doesn't seem too convincing, at least visually I can imagine a lot of points outside A(t) where the trayectorias do not cross. Besides that, great video and a very good topic

  • @takispedaros6704
    @takispedaros6704 4 месяца назад +1

    This channel is a gem for physics students. Subscribed.

  • @MuhammadIsamil
    @MuhammadIsamil 20 дней назад

    Brilliant

  • @eastofthegreenline3324
    @eastofthegreenline3324 6 месяцев назад

    Enjoyed this...at (e.g.) 9:10, why do you use cursive delta in the integral? At 8:17 also, dA = Int (n.v dt)dg and all the d's are cursive, like variational notation?

  • @jennyone8829
    @jennyone8829 Год назад

    Thank you so much 🎈👽🪬☀️♾️

  • @carolinaraquellagunarangel274
    @carolinaraquellagunarangel274 Год назад

    Amazing thanks