Derivation of the Heat Diffusion Equation (1D) using Finite Volume Method

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 10

  • @harryy.8527
    @harryy.8527 7 лет назад +1

    I appreciate your job, I would like if you could show dimensionless in 1D and 2D about heat Diffusion

  • @justingriffin4477
    @justingriffin4477 6 лет назад +6

    When you write the equation in its final form, shouldn't it be dT/dt = alpha d^2T/dx^2? Instead you wrote dT/dx, was this a mistake or am I missing something?

    • @MFedoseyev
      @MFedoseyev 6 лет назад +1

      You are right, Justin. The equation should look exactly like you said

  • @The_Aawara_pahadi
    @The_Aawara_pahadi 3 года назад

    thank-you sir can you tell me that when we take boundary conditions as t(0,t)=20degree and t(L,t)=60degree in finite difference method and if we are solving it by any explicit method so how do we specify the initial temperature conditions at the middle nodes[(0

  • @suryakarla8628
    @suryakarla8628 5 лет назад +8

    Is this the finite difference method ?

  • @sahildhamale1457
    @sahildhamale1457 3 года назад +1

    @Kody Powell It does seems to me like Finite Difference Method. Can you correct me? please

    • @docteurkhatir236
      @docteurkhatir236 3 года назад

      Yes, this is not VFM. It is the Finite difference method

  • @joncutrim7132
    @joncutrim7132 2 года назад

    thank you

  • @docteurkhatir236
    @docteurkhatir236 3 года назад +1

    This is not VFM. It is the Finite difference method.

  • @kosirjure8
    @kosirjure8 5 лет назад

    Would equation be different if the temperature gradient would flow in the -x?