int[sin^4(x)]

Поделиться
HTML-код
  • Опубликовано: 30 ноя 2024

Комментарии • 39

  • @Mr._Nikola_Tesla
    @Mr._Nikola_Tesla 9 месяцев назад +79

    If you never stop teaching, I will never stop learning

  • @chaddest
    @chaddest 9 месяцев назад +15

    Even though I had done this question previously and knew the exact steps, I just watched all along, mesmerized by the way you teach. Let me tell you sir that you are indeed, very cool.

  • @chadisemmouri-ly1lm
    @chadisemmouri-ly1lm 9 месяцев назад +5

    I am a guy who studies math in french, we use something called "linéarisation" which means you use the complexe définition of the sinx which is (e^ix-e^-ix)/2 and when you finish you get the answer

    • @lawrencejelsma8118
      @lawrencejelsma8118 8 месяцев назад

      In Electrical Engineering "State Equations" or differential equations Calculus also! 👍 Integrating by exp()s eases having to integrate sines and cosines in Engineering courses.

  • @kingbeauregard
    @kingbeauregard 9 месяцев назад +3

    You brighten my day. That is all.
    ... also, that really is a quality hat.

    • @PrimeNewtons
      @PrimeNewtons  9 месяцев назад

      Thank you. Good to hear from you.

  • @BeleteAlemneh-j3l
    @BeleteAlemneh-j3l 7 месяцев назад +1

    thank you guy , i am from Ethiopia thank you again

  • @nelsonrobertomiranda7329
    @nelsonrobertomiranda7329 6 месяцев назад

    i struggled with this integral within Signal Processing for 2 years, now my heart finds peace within ❤

  • @diagonal978
    @diagonal978 9 месяцев назад

    man you're the best I swear. Even though I'm new to calculus you just made it look so simple and engaging keep teaching please!!

  • @Moj94
    @Moj94 9 месяцев назад +2

    Thanks to square master I can now enjoy my cup of coffee.

  • @BartBuzz
    @BartBuzz 9 месяцев назад +1

    Your videos are informative and entertaining. At age 78 I have enjoyed having my math memories refreshed. I don't know if you have this book in your library but my favorite reference math book is "Advanced Engineering Mathematics" by Erwin Kreyszig. He was a professor of Mathematics at Ohio State University. Now, your videos are my favorite math refreshers. Keep up the excellent work.

  • @tsuyusk
    @tsuyusk 9 месяцев назад +4

    bro you teach so well

  • @kaibroeking9968
    @kaibroeking9968 9 месяцев назад +1

    This might be a bit beside the point: I am a lecturer at at technical college, and I write quite a bit on blackboards, myself.
    I must compliment you on your neat and elegant writing style: It is very nearly perfect (and close to infinitely better than mine).

  • @Th3OneWhoWaits
    @Th3OneWhoWaits 9 месяцев назад

    Love your enthusiasm sir!

  • @davidgagen9856
    @davidgagen9856 9 месяцев назад

    A wonderfully engaging manner!

  • @biswambarpanda4468
    @biswambarpanda4468 9 месяцев назад

    Superb my great sir..

  • @holyshit922
    @holyshit922 9 месяцев назад

    It can be done with reduction formula
    Int(sin^n(x),x)=Int(sin(x)sin^(n-1)(x),x)
    Int(sin^n(x),x)=-cos(x)sin^(n-1)(x) - Int((-cos(x))((n-1)sin^(n-2)(x)cos(x)),x)
    Int(sin^n(x),x)=-cos(x)sin^(n-1)(x) + (n - 1)Int(sin^(n-2)(x)cos^2(x),x)
    Int(sin^n(x),x)=-cos(x)sin^(n-1)(x) + (n - 1)Int(sin^(n-2)(x)(1-sin^2(x)),x)
    Int(sin^n(x),x)=-cos(x)sin^(n-1)(x) + (n - 1)Int(sin^(n-2)(x),x) - (n - 1)Int(sin^n(x),x)
    (1-(-(n-1)))Int(sin^n(x),x)=-cos(x)sin^(n-1)(x) + (n - 1)Int(sin^(n-2)(x),x)
    nInt(sin^n(x),x)=-cos(x)sin^(n-1)(x) + (n - 1)Int(sin^(n-2)(x),x)
    Int(sin^n(x),x)=-1/n*cos(x)sin^(n-1)(x) + (n - 1)/n*Int(sin^(n-2)(x),x)
    With this reduction formula we can easily calculate it in mind
    -1/4cos(x)sin^3(x)-3/8*cos(x)sin(x)+3/8x + C
    Problems for you
    1. Express Int(sin^n(x),x) in terms of sum (with sigma notation)
    2. Calclulate Int(cos^n(t),t=0..Pi)
    Integral from second problem may be useful if you want to get Chebyshov polynomials via orthogonalization
    To calculate Int(sin^n(x),x) with approach presented in this video
    Substitute t = Pi/2-x to get (-1)^(n+1)Int(cos^n(t),t)
    Get coefficients of Chebyshov polynomial
    via recurrence relation or ordinary differential equation
    Put coefficients ofChebyshov polynomial into the matrix and invert this matrix

  • @siddhanttandon367
    @siddhanttandon367 9 месяцев назад +1

    hey Prime Newtons! Love your teaching. i would just walli's formula for this integral as it is the easiest approach

  • @7ymke
    @7ymke 9 месяцев назад

    great to watch while eating dinner

  • @franky1168
    @franky1168 8 месяцев назад

    hello love your channel. I would like to ask if we could write sin^2(x) as (1-cos2x) / 2 at the second line cause we know cos2x= 1- 2sin^(x). And then go on

  • @CANALIMG
    @CANALIMG 9 месяцев назад

    If you where my Calculus professor I would be so fucking Happy

  • @شهد-ي8ق5ب
    @شهد-ي8ق5ب 9 месяцев назад +1

    Love❤

  • @m.h.6470
    @m.h.6470 9 месяцев назад

    I would have factored out another 1/2 from the integral again, to make the numbers nicer:
    1/8 * integral of (3 - 4cos2x + cos4x) dx
    You end up with
    1/8 [3x - 2sin2x + sin4x/4] + c

  • @morsilimohamed9354
    @morsilimohamed9354 8 месяцев назад

    Perfect

  • @jacobgoldman5780
    @jacobgoldman5780 9 месяцев назад

    Nice solution! Does seem strange that this integral has non-trigonometric parts in final answer but nice that we don't have any powers of trigonometric functions at the end.

    • @jumpman8282
      @jumpman8282 9 месяцев назад

      Yes, it seems a bit strange until you realize that sin⁴𝑥 is always non-negative, which means that the primitive function must be growing and therefore can't consist of only trig functions, because trig functions don't grow, they only oscillate.

  • @JourneyThroughMath
    @JourneyThroughMath 9 месяцев назад

    Its problems like this that bug me. I kept running into road blocks. I would use what is essentially the power reducing formula and square it but i didnt use it a second time, hence the road block.

  • @ayhankrimzad7104
    @ayhankrimzad7104 9 месяцев назад +1

    But we have a formula for §sin^n(x)dx=-1/n×sin^(n-1)(x)cos(x)+(n-1)/nקsin^(n-2)(x)dx

  • @MulerMulatu
    @MulerMulatu 6 месяцев назад

    What you not use reduction formula?

  • @serae4060
    @serae4060 7 месяцев назад

    Wouldn't it be easy if you rewrote sin(x) as (e^ix-e^-ix)/2i?
    And 7:12 instantly made me hear the song "Zombie" in my head

  • @vp_arth
    @vp_arth 9 месяцев назад

    So, there is no general form for «integral of f(g(x)) dx»?

    • @nicolascamargo8339
      @nicolascamargo8339 9 месяцев назад +1

      No porque debería estar multiplicando a f(g(x)) la expresión g'(x) y así la integral da f(g(x))+C pero como no está la expresión g'(x) multiplicando no hay forma general a menos que g(x) sea ax+b para algunos a y b números reales.

  • @charlziedouglas-mo7uc
    @charlziedouglas-mo7uc 8 месяцев назад

    Reduction formula? 😁

  • @said14121
    @said14121 9 месяцев назад

    good

  • @anonakkor9503
    @anonakkor9503 9 месяцев назад

    yoooo nice haha

  • @DEYGAMEDU
    @DEYGAMEDU 9 месяцев назад

    D.I. trick

  • @incognito_tab43
    @incognito_tab43 5 месяцев назад

    I hope you know your work is appreciated, needed and loved sir🫶🏽