An Interesting Infinite Product

Поделиться
HTML-код
  • Опубликовано: 28 ноя 2024

Комментарии • 16

  • @someperson188
    @someperson188 50 минут назад +1

    The nth multiplicand is n(n + 2)/(n + 1)^2, for n = 1, 2, 3, ...
    Lemma. The nth partial product is (n+2)/(2(n+1)).
    Proof. The Lemma holds for n = 1. Suppose the Lemma holds for some n. The (n+1)th multiplicand is (n+1)(n+3)/(n+2)^2. Thus, the (n+1)th partial product is
    [(n+2)/(2(n+1))][(n+1)(n+3)/(n+2)^2] = (n+3)/(2(n+2)).
    proving the Lemma by induction.
    The limit of the partial products is now clearly 1/2.

  • @farhansadik5423
    @farhansadik5423 Час назад +1

    Fantastic as always man 🎉

  • @swthiel
    @swthiel 2 часа назад +2

    Once you've written the product as P=Π[(n+1)(n-1)/n^2 (n= 2, 3...), it's not too tricky to rewrite the product as P=Π(n+1)Π(n-1)/P(n^2) with (n= 2, 3...) and then re-index the (n+1) and (n-1) products to get everything to cancel within a big product (n = 3, 4, ...) except for some leading terms that give you the 1/2.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 4 часа назад +2

    3/4*8/9*15/16*24/25*35/36*…=0.5=1/2

  • @Blaqjaqshellaq
    @Blaqjaqshellaq Час назад

    3/4=1/2 + 1/4
    (3/4)*(8/9)=2/3=1/2 + 1/6
    (3/4)*(8/9)*(15/16)=5/8=1/2 + 1/8
    (3/4)*(8/9)*(15/16)*(24/25)=3/5=1/2 + 1/10
    See the pattern? Each product is an entry in the series 1/2*(1+1/n), which converges at 1/2.

  • @Qermaq
    @Qermaq 30 минут назад

    Interestingly, the product of (n^2 - 1)/(n^2) from n = 2 to k works out to be (k+1)/(2k). From this, it's simple to see that as k tends to infinity the +1 fades away and we get (k)/(2k) or 1/2.

  • @dan-florinchereches4892
    @dan-florinchereches4892 4 часа назад +1

    I would say the for of the product is π (i^2-1)/i^2=π (i-1)(I+1)/I^2
    For I=2 up to N for each product i-1 in numerator will simplify with an i-1 in the previous denominator and I+1 with an I+1 in the next denominator so by simplifying
    π=1/2*(n+1)/N

  • @scottleung9587
    @scottleung9587 29 минут назад

    Nice!

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 часа назад +1

    S=Π(k^2-1)/k^2..(k=2,3...)..applico ln .lnS=Σln((k^2-1)/k^2)=Σln(k^2-1)-Σlnk^2=Σln(k+1)+Σln(k-1)-2Σlnk=(ln3+ln1-2ln2)+(ln4+ln2-2ln3)+(ln5+ln3-2ln4)+(ln6+ln4-2ln5)....=ln1-ln2=-ln2=ln(1/2)...S=1/2

  • @hrk992
    @hrk992 13 минут назад

    prod[(k²-1)/k²]; k=2...n
    = prod[(k²-1)]/(n!²); k=2...n
    = prod[(k-1)(k+1)]/(n!²); k=2...n
    = (n-1)!(n+1)!/(2n!²)
    = 1/2+1/(2n)
    lim[1/2+1/(2n)]; n → oo
    = 1/2