How to Build the Ultimate Hybrid Search with Qdrant

Поделиться
HTML-код
  • Опубликовано: 29 окт 2024

Комментарии • 7

  • @andydataguy
    @andydataguy 3 месяца назад +1

    Great presentation! Nice to see the different search options in practice 🙏🏾

  • @iskrabesamrtna
    @iskrabesamrtna 2 месяца назад

    these new qdrant features look insane, great webinar, I have to test all this myself, really inspiring, thanks!

  • @javilobato4829
    @javilobato4829 3 месяца назад

    Fantastic video! I loved how clearly you explained building the ultimate hybrid search with Qdrant. The step-by-step guide and practical examples made it so easy to follow. Can't wait to implement this in my projects! Any tips on optimizing performance for large datasets? Thanks for sharing!

  • @roberth8737
    @roberth8737 3 месяца назад +1

    More of these!

  • @samketola919
    @samketola919 3 месяца назад

    can i use bm25 in combination with open ai embedding (tekt-embedding-3-smal)? I intend to put about 300 GB of pdf books in qdrant?is there a problem if i omit late interaction embedding?

    • @HarshVerma-k9z
      @HarshVerma-k9z Месяц назад

      I think the best 2 options were dense+sparse with RRF and dense+sparse with Late interaction reranking(As we're only reranking the final result, it is faster than searching the whole late interaction vectordb).

  • @janfilips3244
    @janfilips3244 2 месяца назад

    Kacper, is there a way to reach out to you?