Stokes Theorem

Поделиться
HTML-код
  • Опубликовано: 6 янв 2025

Комментарии •

  • @porchproductionsco
    @porchproductionsco Год назад +11

    This was the only video I could find that went over finding normal vector and parameterization. Thank you for posting

  • @integrateapproximate4000
    @integrateapproximate4000 Год назад +5

    thank you so much Dr. Peyam for this walkthrough! it helped me get a better understanding for the idea!

  • @blackpenredpen
    @blackpenredpen 4 года назад +42

    U lost me at “let’s”

    • @blackpenredpen
      @blackpenredpen 4 года назад +13

      On a serious note, r u teaching this to ur calc 3 students already? 😱

    • @drpeyam
      @drpeyam  4 года назад +14

      No. we stop at surface integrals 😭😭😭

    • @رضاشریعت
      @رضاشریعت 4 года назад

      @@drpeyam because of limited time issues right?

    • @adityadwivedi4412
      @adityadwivedi4412 4 года назад

      @@drpeyam is this part of calc 3 as we were taught this is calc2

  • @hungryplate400
    @hungryplate400 4 года назад +25

    The dark side of the Stokes theorem is a pathway to many abilities some consider to be unnatural.

    • @kentang5957
      @kentang5957 2 года назад +1

      is it possible to learn this power?

  • @OtherTheDave
    @OtherTheDave 4 года назад +11

    I misread the title as “The Dark Side of Strokes” and I was all “wait, there’s a light side to those?”

  • @J_psi0
    @J_psi0 4 года назад +3

    Love your videos! Both so fun and educational

  • @emperorpingusmathchannel5365
    @emperorpingusmathchannel5365 4 года назад +11

    Initially learning stoke's theorem nearly gave me a stroke.

  • @jesusalej1
    @jesusalej1 4 года назад +3

    Claro que si amigo!

  • @thesnakednake
    @thesnakednake 2 года назад +1

    This video is absolutely fantastic

    • @drpeyam
      @drpeyam  2 года назад +1

      Thank you :)

  • @borisburd2951
    @borisburd2951 3 года назад +1

    Very clear, thank you

  • @historybuff0393
    @historybuff0393 4 года назад +2

    .Dr. Peyam, at the point at which you parameterized the surface, could you have used polar coordinates and the dS factor and avoided having to do the cross product? I saw that at the end you used polar coordinates anyway.

    • @GhostyOcean
      @GhostyOcean 4 года назад

      Doing that would make dS messy. It's a lot cleaner this way.

  • @luna9200
    @luna9200 4 года назад +4

    Do you ever plan on doing some analysis on manifolds? I notice you have been gearing towards analysis on the real line and a little bit of topology. Maybe some differential forms/the generalized stokes theorem?

  • @guill3978
    @guill3978 4 года назад +1

    One question, is a transcendental number the integral from 2 to 3 of the zeta function?

  • @RonaldKungu-h3x
    @RonaldKungu-h3x Месяц назад

    Very good lecture

  • @ronaldjensen2948
    @ronaldjensen2948 4 года назад

    3:09 - I've always felt that is a really hard way to take a cross-product/determinate of a 3x3 matrix

  • @zunzwak4482
    @zunzwak4482 2 месяца назад

    thank youuu!

  • @elta8064
    @elta8064 3 года назад

    sir can you maybe include an example on how stoke's theorem can be used with gauss's theorem to calculate open loops, or any other example as such. a my professor taught it, but I wasn't too sure, and your videos are superrrrrr clear. thanks so much

    • @drpeyam
      @drpeyam  3 года назад

      Never heard of it

    • @elta8064
      @elta8064 3 года назад

      @@drpeyam an example of question would be (integration sign{c})(a.dr) where a =(-y/(x^2+y^2) ,x/(x^2+y^2),1)
      where c in the first octant is given by :
      x^2 + y^2 =1 , x+2y-z=1
      it starts from (1,0,0) to (0,1,1)
      ans. (pi/2) +1

  • @historybuff0393
    @historybuff0393 4 года назад

    I actually subsequently did this integral without parametrizing and without the cross product, and got the same answer.

    • @drpeyam
      @drpeyam  4 года назад

      Good for you

  • @shlomi8307
    @shlomi8307 4 года назад

    Peyam joon, please make series of vedio explain all vector fields from beginning till this green and stokes theorems for uneducated ones like me to get the point. Merci

  • @NH-zh8mp
    @NH-zh8mp 4 года назад +1

    Dear Dr Payem, may you help me solve this problem, please ?
    Give a,b are real numbers. Evaluating the integral of x.e^(-x^2) dx, from a to b, by letting t=x^2,
    with 3 conditions :
    1. 0 ≤ a ≤ b
    2. a ≤ 0 ≤ b
    3. a ≤ b ≤ 0
    And I also wonder if we can use Stokes Theorem in this problem, sir.
    Thank you sir

    • @drpeyam
      @drpeyam  4 года назад +1

      This has nothing to do with stokes, it’s a single variable integral

  • @arkamninguno8446
    @arkamninguno8446 4 года назад

    Dr. Peyam, how do you know the parametruzation of "S"? How I know That is r(x, y) = (x, y, 1)? Someone ecuation?

    • @drpeyam
      @drpeyam  4 года назад +1

      Check out my video on parametric surfaces

    • @arkamninguno8446
      @arkamninguno8446 4 года назад

      @@drpeyam ohhh, that's right. Jajajaj thank you, I see. 😊

  • @the_magisterate
    @the_magisterate 4 года назад +5

    Dang, now i feel better bombing vector calculus knowing that Dr. peyam struggled with stoke’s theorem too lol

  • @MliloEvidence
    @MliloEvidence 2 месяца назад

    so funny and amazing to follow😇

  • @Nonita611
    @Nonita611 Год назад

    thanks

  • @رضاشریعت
    @رضاشریعت 4 года назад +2

    I actually used the dark side more than the other side

  • @JohnVKaravitis
    @JohnVKaravitis Год назад

    I don't believe that you can have any arbitrary surface. Your surface can't extend beyond the outermost line curve defined by dropping perpendicular down from every point on the surface.

  • @dougr.2398
    @dougr.2398 4 года назад

    You can integrate over the circular area or over the hemisphere, correct? Which one will be simpler? (Asked very early in viewing, prior to computation of the determinant)... compute one component & permute the variables

  • @liverpoolsintensity1670
    @liverpoolsintensity1670 Год назад

    Please is there any where you can make your lessons a bit simpler? Although I love your lessons but I usually get lost at some point

    • @drpeyam
      @drpeyam  Год назад +1

      That’s the simplest way to present this topic. Also check out the playlist

    • @liverpoolsintensity1670
      @liverpoolsintensity1670 Год назад

      @@drpeyam Thank Dr Peyam..I am hoping to be as good as you someday in mathe😩

  • @शिवलालचौधरी-य7ढ

    धन्यवाद ।

  • @jesusalej1
    @jesusalej1 4 года назад +3

    Que el redultado sea cero, no significa que no sea interesante.
    The solution is zero does not mean it is not interesting!

  • @pandabearguy1
    @pandabearguy1 4 года назад

    I think I had this excact ssme problem on my calc 3 final

  • @calebmoranga8379
    @calebmoranga8379 6 месяцев назад +1

    Im cooked😢

  • @pandabearguy1
    @pandabearguy1 4 года назад

    Turns out manifolds and exterior derivatives are important

  • @jeemain9071
    @jeemain9071 4 года назад +1

    Bye

  • @kacperkinastowski5583
    @kacperkinastowski5583 3 года назад

    easy of hard = hard of easy

  • @cyrenux
    @cyrenux 4 года назад +1

    Hi

  • @revelationSandJ
    @revelationSandJ 4 года назад

    Stokes ist der beste Freund von Tom crawford . Den hättest du einladen müssen

  • @akashroopmalhi1649
    @akashroopmalhi1649 2 года назад

    GOAT

  • @guill3978
    @guill3978 4 года назад

    Ok, do you think you'd be able to prove it or umprove it?

  • @alejandraescalante2775
    @alejandraescalante2775 Год назад

    wow is very simple video...thanks...F(x,y,z)=z^2 i+2xj+y^2 k
    S:z=1-x^2-y^2,z≥0

  • @umerfarooq4831
    @umerfarooq4831 4 года назад +1

    This is too dark

  • @carleto-y8q
    @carleto-y8q 10 месяцев назад

    Horse shit, a length is not equal to a surface area. Why do you omit the units of the integrals?