How to Solve: The integral of (x-6) / (x^2 + 6x + 10) dx

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии • 6

  • @laggyclip
    @laggyclip 3 месяца назад +1

    Thanks for teaching this. Also I’m pretty sure what you did was allowed but couldn’t it also be arccot?

    • @Dablue5
      @Dablue5  3 месяца назад

      You are right about that, I forgot about arccot 💀

  • @emre-rt1xz
    @emre-rt1xz 3 месяца назад

    nice 👍

  • @Raphael_Rodrigues
    @Raphael_Rodrigues 3 месяца назад

    i did it a little different. I think it's a simpler way.
    (x-6)(x^2+6x+10)^-1
    (x-6)[(x+3+j)(x+3-j)]^-1
    x-6 = a(x+3-j) + b(x+3+j)
    (+j)(-j) = (+j) (-j)
    1/2(1-9j) = a
    1/2(1+9j) = b
    integral(a(x+3+j)^(-1)+b(x+3-j)^(-1))dx
    aln(x+3+j)+bln(x+3-j)+cte //

    • @Dablue5
      @Dablue5  3 месяца назад

      @@Raphael_Rodrigues true this does seem much simpler and faster, do you mind telling me what this method is called so that I can learn it?

    • @Raphael_Rodrigues
      @Raphael_Rodrigues 3 месяца назад

      @@Dablue5 it's called partial fraction decomposition