Danke für das Video. Ich hätte noch eine kurze Frage: Muss Multikollinerität auch für Interaktionen untersucht werden? Im Grunde macht es ja irgendwie auch Sinn, dass diese mit den Haupteffekten korrelieren, wenn ich alles gemeinsam in einem Modell untersuche. Oder ist das trotzdem ein Problem? Viele Grüße
Hallo, ja, da eine Interaktion auch nichts anderes als eine lineare Regression ist, muss diese auch mit untersucht werden. Es ist auch logisch, das es schon eine recht hohe Korrelation zwischen den Termen und ihrem Produkt gibt. Wenn diese Terme also einen recht hohen VIF-Wert haben, kann man das natürlich entsprechend argumentativ begründen und so weiterrechnen. Viele Grüße, Björn.
Hallo Mirjam und danke für dein Lob! Auf S. 402 bei Field, Andy (2018) amzn.to/2H4S7qV stehen die Werte: amzn.to/2H4S7qV Field zitiert Bowerman, O'Connell (1990), Linear statistical models: an applied approach und Myers (1990) Classical and modern regression with applications. Viele Grüße, Björn.
Vielen Vielen Dank. Ist es okay, wenn man bei der Multikollinearität nicht die Prädiktoren nimmt, sondern die Korrelation zwischen den Interaktiontermen, die man gebildet hat (zwecks hierarchischer Regression)?
Ich hab jetzt bei mir geschaut ob die Variablen meines Faktors untereinander korrelieren und keine Multikollinearität festgestellt. Den schritt der logistischen Regression brauche ich für die Faktoren nicht oder?
Danke für das Video. Meine Frage ist noch, wieso ihr die Pearson-Korrealtion und nicht Spearman anwendet, obwohl kategoriale Variablen dabei sind? Ebenso bei der Regression ... müssten zur Berechnung des Modells nicht Dummies erstellt werden? Oder ist das in diesem Fall nicht notwendig? Danke :)
Hallo sirtobygreen, du prüfst die Variablen auf Multikollinearität, die du in dein Modell aufgenommen hast, weil ja die und keine anderen zur Schätzung der Gleichung verwendet werden und dich ja nur deren Zusammenhang interessiert. Streng genommen sollte man bei der von mir getroffenen Variablenauswahl weder Spearman noch Pearson verwenden: ruclips.net/video/lCRiOkwHIGA/видео.html Da ich die Korrelation aber nur als Daumenregel und ersten Anhaltspunkt verwendet habe und mich lieber auf die VIF-Werte verlasse, ist das an der Stelle nicht weiter schlimm. Viele Grüße, Björn.
Statistik am PC sollte ich dann überhaupt auf die Korrelationen zwischen den einzelnen Werten eingehen? Da die VIF Werte mir ja eigentlich genügen. Habe nämlich eine Korrelation zwischen 2 Werten von 85 % aber die FIV Werte sind mit 4.6 noch im Rahmen.
Erst einmal vielen Dank, für Deine tollen Videos lieber Björn! :) Ich versuche nun auch schon eine ganze Weile herauszufinden, wie ich in einem Regressionsmodell mit metrischen und (mehreren) Dummy-Variablen die Multikollinearität prüfe. Gibt es eine Möglichkeit, alle Variablen gemeinsam zu betrachten? Ich habe mir auch das Video zu den verschiedenen Arten der Korrelation angesehen, bin mir aber nicht sicher, ob der Eta-Koeffizient in meinem Fall hilfreich ist, da es sich ja nicht um nominalskalierte, sondern um Dummy-Variablen handelt (und wenn ich Dich richtig verstehe, dann nimmt man doch die Dummy-Variablen?). Mich würde auch interessieren, ob die VIF-Werte auch bei Dummy-Variablen herangezogen werden können. Ich würde mich sehr über eine Antwort freuen! Vielen Dank!
Danke für das Super Video! Hab da aber eine Frage: Im Andy Fields Buch steht, dass der Mittelwert aller VIF Werte nicht weit von 1 abweichen sollte (in der Dritten Ausgabe auf Seite 242). Bei diesem Beispiel wäre der Mittelwert auf 2.075 Ware das jetzt zu viel?
Danke für das informative Video. Du gehst nicht auf die die Werte des Konditionsindex ein. Kann man diese bei der Prüfung auf Multikollinearität unberücksichtigt lassen und sich ausschließlich auf den Varianzinflationsfaktor konzentrieren? Danke vorab!
Hi Björn, ich bin gerade bei der Analyse mit SPSS über deine Videos gestolpert, weil ich eine Hilfe zur Interpretation einzelner Werte gesucht hab - danke schon mal für die Hilfe! Ich habe bei meiner Analyse (multiple lineare Regression) das Problem, dass die einzelnen unabhängigen Variablen eine hohe Korrelation mit der abhängigen Variable aufweisen und auch signifikanten Einfluss haben, wenn ich die einzelne lineare Regression betrachte aber KEINE mehr signifikant ist, wenn ich sie gemeinsam betrachte (4 UV). Die Toleranz und die VIF Werte sind aber völlig okay (Toleranz zwischen 0,3 und 0,5, VIF dementsprechend zwischen 2 und 3,2). Logisch ausschließen kann ich auch keine. Hast du eine Idee, was ich jetzt noch an Analysekram machen kann oder wie ich das in der Masterarbeit formuliere? Ich habe zu der Regression ohnehin zwei Hypothesen (die UVs kommen aus zwei verschiedenen Themenbereichen, mache ich dann einfach zwei multiple lineare Regression, von denen jede nur 2 UVs hat und hoffe, dass die Ergebnisse besser sind? Viele Grüße, Mareike
Vielen Dank für das hilfreiche Video! Ich habe noch eine Frage: Ist es ein Problem, wenn man Faktoren als uV verwendet (die zuvor durch Faktorenanalyse erstellt wurden). Testet man dann trotzdem die Multikollinearität?
Hallo, im Anschluss an eine FA fasst du ja normalerweise die Items zu einem Konstrukt zusammen, gerade weil sie hoch miteinander korrelieren. Wenn es sich um hohe Korrelation zwischen zwei Konstrukten handelt, sollte man aber nachdenken, ob es inhaltlich ausreicht eins zu verwenden. Viele Grüße, Björn.
erstmal 1000 Dank für das Video! Wenn in der weiteren Analyse der VIF und die Toleranz der hoch korrelierenden Variablen okay ist, darf ich die Regression mit den Variablen rechnen?
Hallo Björn! Vielen Dank für deine super hilfreichen Videos! Könntest du mir sagen, ob man auch die unabhängigen Variablen mit berücksichtigen muss bzgl. Multikollinearität, die man als Kontrollvariablen (z.B. Alter, Geschlecht) mit einfügt? Ich würde dies über eine hierarchische Regressionsanalyse machen und dabei im 1. Block die Kontrollvariablen einschließen, im 2. meine Prädiktoren und im 3. Block den Interaktionstermin, um zu prüfen, ob eine Moderation vorliegt? Würde man auch den Interaktionstermin bei den Korrelationen berücksichtigen? Vielen Dank schon mal für deine Antwort!!
Hallo Christina, es sind alle UV hinsichtlich Multikollinearität zu beachten. Du wirst bei deinem Block 3 definitiv Multikollinearität beobachten können - zwischen X, M und X*M. Das ist mathematisch nicht vermeidbar, da der Interaktionsterm das Produkt einer UV mit dem Moderator ist, was zwangsweise Korrelation hervorruft. Das ist aber akzeptabel bzw wie gesagt nicht vermeidbar. Viele Grüße, Björn.
Hallo Kerstin, bei einer unabhängigen Variable besteht das Problem der Multikollinearität per Definition nicht. Das brauchst du also nicht prüfen. Viele Grüße, Björn.
Hallo Björn :-) Danke für dein Video! Einfach super! Ist es denn egal, was ich über deinen Affiliate Link kaufe? Ich wollte gerne fragen, ob ich die Multikollinearität auch bei einer Regression mit 2 Prädiktoren berechnen muss, in die der 2. Prädiktor lediglich als Kontrollvariable eingeht? Danke schon vorab für deine Antwort! LG Christina
Hallo Christina, danke für dein Lob! Der Vollständigkeit wegen solltest du sie berechnen, da die Kovariate auch als einfacher Prädiktor Eingang ins Modell findet. Viele Grüße, Björn.
Hallo! Ich möchte in meiner Masterthesis u.a. moderierte Regressionen rechnen. Ich habe eine ordinal skalierte UV, und einen nominal skalierten Moderator. Aufgrund der dichotomen Ausprägung von 0 und 1 habe ich von einer Zentrierung der UV und des Moderators abgesehen. Mein Problem ist jetzt, dass Moderator und der Interaktionsterm zu über .9 korrelieren und die Toleranz und VIF-Werte viel zu klein/groß sind (.007 und 140). Was kann ich in so einem Fall machen? Muss ich dann davon absehen, eine Moderation zu rechnen? Vielen Dank für deine Antwort!
Hallo Marianne, das der Interaktionsterm (X*M) mit seinen Faktoren X und M hoch korreliert ist nur logisch. Sie befinden sich ja vereinfacht gesagt in multiplikativer Abhängigkeit. Das ist aufgrund der mathematischen Konstruktion des Interaktionsterms zu erwarten und kein Grund die Interaktion nicht zu untersuchen. Viele Grüße, Björn.
Hallo Jessica, die Pearson-Korrelation erlaubt die Korrelation von dichotomen kategorialen Variablen mit metrischen Variablen. Das ist die sog. punktbiseriale Korrelation. Du spielst aber sicher auf die Variable Akademikerhaushalt an. Die ist fälschlicherweise kategorial in SPSS hinterlegt, obwohl sie metrisch ist; sie gibt die Anzahl der Haushaltsmitglieder an, die einen Hochschulabschluss haben. Viele Grüße, Björn.
Danke für die schnelle Antwort, ja ich habe auf Akademikerhaushalt angespielt:) Das heißt wenn einer meiner Prädiktoren aber nominalskaliert wäre und drei Ausprägungen hätte (wie zum Beispiel die Gruppenzugehörigkeit zu Interventionsgruppe 1, 2 oder Kontrollgruppe) und die anderen Prädiktoren wären metrisch, dann müsste ich Eta² als Korrelationskoeffizient berechnen, richtig?
Hallo und erstmal danke für das super Video! Folgende Frage: Ich habe drei UV a,b und c sowie 2 AV x und y. H1: a wirkt positiv auf x H2: b wirkt positiv auf x H3: c wirkt negativ auf x H4: a wirkt positiv auf y Zudem habe ich Kontrollvariablen Alter, Geschlecht, Berufserfahrung, usw. Muss ich nur a,b und c auf Multik. prüfen oder auch die Kontrollvariablen? Danke und VG
@@StatistikamPC_BjoernWalther Danke für deine Hilfe! Also auch die Kontrollvariablen müssen geprüft werden richtig? Ich habe meine drei Kontrollvariablken jetzt separat von den zu interessierenden UV geprüft.
Vielen Dank für deine vielen super hilfreichen Videos! Ich habe allerdings (wie die meisten Kommentarschreiber hier) noch eine kleine Frage. Wie lässt sich die Kollinearität interpretieren, wenn sie so gravierend ist, dass dadurch eine ganze Hypothese nicht mehr gerechnet werden kann? Konkret geht es mir darum, dass bei mir bei einer Moderatoranalyse per Regression der Prädiktor und der Interaktionsterm scheinbar so stark korrelieren, dass mir SPSS automatisch eine der beiden Variablen rausschmeißt...
Hallo und danke für dein Lob! Man muss gerade bei Interaktion vorsichtig sein. Dass ein Interaktionsterm, der ja eine Produkt aus zwei Faktoren ist, sehr hoch mit eben jenen Faktoren korreliert, ist nichts ungewöhnliches. Hier ist Pragmatismus geboten und eine Interaktion kann dennoch unter Angabe der o.g. Gründe gerechnet werden. Viele Grüße, Björn.
Hallo Humanrito, wenn es sich begründen lässt, ginge das. Es muss aber ein guter Grund sein, weil du dir ja bei der ursprünglichen Aufnahme sicherlich was gedacht hast. Viele Grüße, Björn.
Statistik am PC hallo. Danke für die Antwort! Ich dachte ursprünglich es wäre ein K.O-Kriterium und man müsste den Indikator dann verwerfen. Das hat mir schonmal sehr weitergeholfen, nochmals danke. Wie würde man das dann verargumentieren bei der weiteren Analyse ? Lg
Normalerweise ist das recht schwierig zu begründen, eine UV aufgrund eines hohen VIF-Wertes aus dem Modell zu entfernen. Wenn er z.B. ähnliches misst, wie eine andere UV und sie deswegen so hoch korrelieren (>0,8), dann könnte man das so argumentieren. Ist aber wie gesagt ein generell schwieriges Feld. Viele Grüße, Björn.
habe das problem das ich keine korrelation habe, die toleranz aller var. ist zwischen 0,4-0,9 also sehr gut und vif werte liegen zwischen 1-2 also auch sehr gut aber mein R^2 ist sehr sehr klein und mein korigiertes ist sogar negativ. woran kann es liegen? auch die signifikanz aller variablen ist sehr schlecht 0,4-0,8 nur eine ist unter 0,05. ich habe auch über 100 fälle analysiert also denke das die anzahl ok ist.
Hallo, das kann mitunter sein. Manchmal ist das Modell i.O., zeigt sich aber nicht in den Daten. Evt. ist es eine unpassende Stichprobe oder die Operationalisierungen sind nicht passend. Das diskutiert man dann auch recht offen, was für Gründe es geben kann, dass das Modell nicht auf die Daten passt. Viele Grüße, Björn.
Dieser Kanal rettet gerade meine Statistikprüfung. Vielen Dank für die Videos. Alles absolut anschaulich und verständlich!
Hallo Anne, das freut mich zu hören. :-) Dann noch viel Erfolg bei deiner Prüfungsvorbereitung und Prüfung an sich!
Viele Grüße, Björn.
Bist einfach ein Gott 1000 Dank
Super, dass es jetzt auch einen deutschen Statistikkanal gibt. Weiter so! :)
Danke für dein Lob!
Viele Grüße, Björn.
Oh man, deine Videos haben mir echt den Arsch gerettet... 1000 Dank dir fürs Hochladen!!
Hallo Gloeckchen, das freut mich! Dann viel Erfolg weiterhin!
Viele Grüße, Björn.
Danke für das Video. Ich hätte noch eine kurze Frage: Muss Multikollinerität auch für Interaktionen untersucht werden? Im Grunde macht es ja irgendwie auch Sinn, dass diese mit den Haupteffekten korrelieren, wenn ich alles gemeinsam in einem Modell untersuche. Oder ist das trotzdem ein Problem? Viele Grüße
Hallo, ja, da eine Interaktion auch nichts anderes als eine lineare Regression ist, muss diese auch mit untersucht werden. Es ist auch logisch, das es schon eine recht hohe Korrelation zwischen den Termen und ihrem Produkt gibt. Wenn diese Terme also einen recht hohen VIF-Wert haben, kann man das natürlich entsprechend argumentativ begründen und so weiterrechnen.
Viele Grüße, Björn.
Danke für das Video, super Erklärungen! Kannst du Literatur nennen, in denen die kritischen Grenzwerte von 10 für VIF stehen?
Hallo Mirjam und danke für dein Lob! Auf S. 402 bei Field, Andy (2018) amzn.to/2H4S7qV stehen die Werte: amzn.to/2H4S7qV
Field zitiert Bowerman, O'Connell (1990), Linear statistical models: an applied approach und Myers (1990) Classical and modern regression with applications.
Viele Grüße, Björn.
Vielen Vielen Dank. Ist es okay, wenn man bei der Multikollinearität nicht die Prädiktoren nimmt, sondern die Korrelation zwischen den Interaktiontermen, die man gebildet hat (zwecks hierarchischer Regression)?
Ich hab jetzt bei mir geschaut ob die Variablen meines Faktors untereinander korrelieren und keine Multikollinearität festgestellt. Den schritt der logistischen Regression brauche ich für die Faktoren nicht oder?
Danke für das Video. Meine Frage ist noch, wieso ihr die Pearson-Korrealtion und nicht Spearman anwendet, obwohl kategoriale Variablen dabei sind? Ebenso bei der Regression ... müssten zur Berechnung des Modells nicht Dummies erstellt werden? Oder ist das in diesem Fall nicht notwendig? Danke :)
Und muss ich - wenn ich Dummies erstellt habe - den Test auf Multikollinearität mit diesen durchführen, oder mit der Ursprungsvariable?
Hallo sirtobygreen, du prüfst die Variablen auf Multikollinearität, die du in dein Modell aufgenommen hast, weil ja die und keine anderen zur Schätzung der Gleichung verwendet werden und dich ja nur deren Zusammenhang interessiert.
Streng genommen sollte man bei der von mir getroffenen Variablenauswahl weder Spearman noch Pearson verwenden: ruclips.net/video/lCRiOkwHIGA/видео.html
Da ich die Korrelation aber nur als Daumenregel und ersten Anhaltspunkt verwendet habe und mich lieber auf die VIF-Werte verlasse, ist das an der Stelle nicht weiter schlimm.
Viele Grüße, Björn.
Statistik am PC sollte ich dann überhaupt auf die Korrelationen zwischen den einzelnen Werten eingehen? Da die VIF Werte mir ja eigentlich genügen. Habe nämlich eine Korrelation zwischen 2 Werten von 85 % aber die FIV Werte sind mit 4.6 noch im Rahmen.
Erst einmal vielen Dank, für Deine tollen Videos lieber Björn! :) Ich versuche nun auch schon eine ganze Weile herauszufinden, wie ich in einem Regressionsmodell mit metrischen und (mehreren) Dummy-Variablen die Multikollinearität prüfe. Gibt es eine Möglichkeit, alle Variablen gemeinsam zu betrachten? Ich habe mir auch das Video zu den verschiedenen Arten der Korrelation angesehen, bin mir aber nicht sicher, ob der Eta-Koeffizient in meinem Fall hilfreich ist, da es sich ja nicht um nominalskalierte, sondern um Dummy-Variablen handelt (und wenn ich Dich richtig verstehe, dann nimmt man doch die Dummy-Variablen?). Mich würde auch interessieren, ob die VIF-Werte auch bei Dummy-Variablen herangezogen werden können. Ich würde mich sehr über eine Antwort freuen! Vielen Dank!
Danke für das Super Video!
Hab da aber eine Frage:
Im Andy Fields Buch steht, dass der Mittelwert aller VIF Werte nicht weit von 1 abweichen sollte (in der Dritten Ausgabe auf Seite 242). Bei diesem Beispiel wäre der Mittelwert auf 2.075
Ware das jetzt zu viel?
Danke für das informative Video. Du gehst nicht auf die die Werte des Konditionsindex ein. Kann man diese bei der Prüfung auf Multikollinearität unberücksichtigt lassen und sich ausschließlich auf den Varianzinflationsfaktor konzentrieren? Danke vorab!
Hallo Bettina, ja, man schaut sich idR nur Toleranz bzw. VIF an, weil sie die wesentliche Information beinhalten.
Viele Grüße, Björn.
Hi Björn,
ich bin gerade bei der Analyse mit SPSS über deine Videos gestolpert, weil ich eine Hilfe zur Interpretation einzelner Werte gesucht hab - danke schon mal für die Hilfe!
Ich habe bei meiner Analyse (multiple lineare Regression) das Problem, dass die einzelnen unabhängigen Variablen eine hohe Korrelation mit der abhängigen Variable aufweisen und auch signifikanten Einfluss haben, wenn ich die einzelne lineare Regression betrachte aber KEINE mehr signifikant ist, wenn ich sie gemeinsam betrachte (4 UV). Die Toleranz und die VIF Werte sind aber völlig okay (Toleranz zwischen 0,3 und 0,5, VIF dementsprechend zwischen 2 und 3,2). Logisch ausschließen kann ich auch keine. Hast du eine Idee, was ich jetzt noch an Analysekram machen kann oder wie ich das in der Masterarbeit formuliere? Ich habe zu der Regression ohnehin zwei Hypothesen (die UVs kommen aus zwei verschiedenen Themenbereichen, mache ich dann einfach zwei multiple lineare Regression, von denen jede nur 2 UVs hat und hoffe, dass die Ergebnisse besser sind?
Viele Grüße,
Mareike
Vielen Dank für das hilfreiche Video!
Ich habe noch eine Frage: Ist es ein Problem, wenn man Faktoren als uV verwendet (die zuvor durch Faktorenanalyse erstellt wurden). Testet man dann trotzdem die Multikollinearität?
Hallo, im Anschluss an eine FA fasst du ja normalerweise die Items zu einem Konstrukt zusammen, gerade weil sie hoch miteinander korrelieren. Wenn es sich um hohe Korrelation zwischen zwei Konstrukten handelt, sollte man aber nachdenken, ob es inhaltlich ausreicht eins zu verwenden.
Viele Grüße, Björn.
erstmal 1000 Dank für das Video! Wenn in der weiteren Analyse der VIF und die Toleranz der hoch korrelierenden Variablen okay ist, darf ich die Regression mit den Variablen rechnen?
Wenn die vif Werte und die Toleranz bei mir ok sind heißt das es ist unproblematisch oder sollte ich mir grafisch noch irgendwas ansehen?
Hallo Björn! Vielen Dank für deine super hilfreichen Videos! Könntest du mir sagen, ob man auch die unabhängigen Variablen mit berücksichtigen muss bzgl. Multikollinearität, die man als Kontrollvariablen (z.B. Alter, Geschlecht) mit einfügt? Ich würde dies über eine hierarchische Regressionsanalyse machen und dabei im 1. Block die Kontrollvariablen einschließen, im 2. meine Prädiktoren und im 3. Block den Interaktionstermin, um zu prüfen, ob eine Moderation vorliegt? Würde man auch den Interaktionstermin bei den Korrelationen berücksichtigen? Vielen Dank schon mal für deine Antwort!!
Hallo Christina, es sind alle UV hinsichtlich Multikollinearität zu beachten. Du wirst bei deinem Block 3 definitiv Multikollinearität beobachten können - zwischen X, M und X*M. Das ist mathematisch nicht vermeidbar, da der Interaktionsterm das Produkt einer UV mit dem Moderator ist, was zwangsweise Korrelation hervorruft. Das ist aber akzeptabel bzw wie gesagt nicht vermeidbar.
Viele Grüße, Björn.
@@StatistikamPC_BjoernWalther Super, vielen herzlichen Dank für deine schnelle und hilfreiche Antwort!!
Ich habe nur eine abhängige Variable, wie soll ich dann Multikollinearität berechnen ? Ich möchte nämlich dann die lineare Regression anwenden
Hallo Kerstin, bei einer unabhängigen Variable besteht das Problem der Multikollinearität per Definition nicht. Das brauchst du also nicht prüfen.
Viele Grüße, Björn.
Hallo Björn :-)
Danke für dein Video! Einfach super! Ist es denn egal, was ich über deinen Affiliate Link kaufe?
Ich wollte gerne fragen, ob ich die Multikollinearität auch bei einer Regression mit 2 Prädiktoren berechnen muss, in die der 2. Prädiktor lediglich als Kontrollvariable eingeht?
Danke schon vorab für deine Antwort!
LG
Christina
Hallo Christina, danke für dein Lob!
Der Vollständigkeit wegen solltest du sie berechnen, da die Kovariate auch als einfacher Prädiktor Eingang ins Modell findet.
Viele Grüße, Björn.
Hallo!
Ich möchte in meiner Masterthesis u.a. moderierte Regressionen rechnen. Ich habe eine ordinal skalierte UV, und einen nominal skalierten Moderator. Aufgrund der dichotomen Ausprägung von 0 und 1 habe ich von einer Zentrierung der UV und des Moderators abgesehen.
Mein Problem ist jetzt, dass Moderator und der Interaktionsterm zu über .9 korrelieren und die Toleranz und VIF-Werte viel zu klein/groß sind (.007 und 140). Was kann ich in so einem Fall machen? Muss ich dann davon absehen, eine Moderation zu rechnen?
Vielen Dank für deine Antwort!
Hallo Marianne, das der Interaktionsterm (X*M) mit seinen Faktoren X und M hoch korreliert ist nur logisch. Sie befinden sich ja vereinfacht gesagt in multiplikativer Abhängigkeit. Das ist aufgrund der mathematischen Konstruktion des Interaktionsterms zu erwarten und kein Grund die Interaktion nicht zu untersuchen.
Viele Grüße, Björn.
Eine Frage, ich dachte man darf keine Pearson Korrelation mit nominalskalierten Variablen rechnen, warum ist es hier in Ordnung? Danke
Hallo Jessica, die Pearson-Korrelation erlaubt die Korrelation von dichotomen kategorialen Variablen mit metrischen Variablen. Das ist die sog. punktbiseriale Korrelation. Du spielst aber sicher auf die Variable Akademikerhaushalt an. Die ist fälschlicherweise kategorial in SPSS hinterlegt, obwohl sie metrisch ist; sie gibt die Anzahl der Haushaltsmitglieder an, die einen Hochschulabschluss haben.
Viele Grüße, Björn.
Danke für die schnelle Antwort, ja ich habe auf Akademikerhaushalt angespielt:) Das heißt wenn einer meiner Prädiktoren aber nominalskaliert wäre und drei Ausprägungen hätte (wie zum Beispiel die Gruppenzugehörigkeit zu Interventionsgruppe 1, 2 oder Kontrollgruppe) und die anderen Prädiktoren wären metrisch, dann müsste ich Eta² als Korrelationskoeffizient berechnen, richtig?
Hallo und erstmal danke für das super Video!
Folgende Frage: Ich habe drei UV a,b und c sowie 2 AV x und y.
H1: a wirkt positiv auf x
H2: b wirkt positiv auf x
H3: c wirkt negativ auf x
H4: a wirkt positiv auf y
Zudem habe ich Kontrollvariablen Alter, Geschlecht, Berufserfahrung, usw.
Muss ich nur a,b und c auf Multik. prüfen oder auch die Kontrollvariablen?
Danke und VG
Würde mich auch interessieren. Hast du dazu schon eine Lösung gefunden? lg
Hallo ihr zwei. Sämtliche UV sind auf Multikollinearität zu prüfen. Am einfachsten über die VIF-Werte.
Viele Grüße, Björn.
@@StatistikamPC_BjoernWalther Danke für deine Hilfe! Also auch die Kontrollvariablen müssen geprüft werden richtig? Ich habe meine drei Kontrollvariablken jetzt separat von den zu interessierenden UV geprüft.
Vielen Dank für deine vielen super hilfreichen Videos! Ich habe allerdings (wie die meisten Kommentarschreiber hier) noch eine kleine Frage. Wie lässt sich die Kollinearität interpretieren, wenn sie so gravierend ist, dass dadurch eine ganze Hypothese nicht mehr gerechnet werden kann? Konkret geht es mir darum, dass bei mir bei einer Moderatoranalyse per Regression der Prädiktor und der Interaktionsterm scheinbar so stark korrelieren, dass mir SPSS automatisch eine der beiden Variablen rausschmeißt...
Hallo und danke für dein Lob!
Man muss gerade bei Interaktion vorsichtig sein. Dass ein Interaktionsterm, der ja eine Produkt aus zwei Faktoren ist, sehr hoch mit eben jenen Faktoren korreliert, ist nichts ungewöhnliches. Hier ist Pragmatismus geboten und eine Interaktion kann dennoch unter Angabe der o.g. Gründe gerechnet werden.
Viele Grüße, Björn.
Hallo! Danke für das Video! Könnte man auch bei einem reflektiven Modell den Indikator mit hohen VIF-Wert einfach rausnehmen? lg
Hallo Humanrito, wenn es sich begründen lässt, ginge das. Es muss aber ein guter Grund sein, weil du dir ja bei der ursprünglichen Aufnahme sicherlich was gedacht hast.
Viele Grüße, Björn.
Statistik am PC hallo. Danke für die Antwort! Ich dachte ursprünglich es wäre ein K.O-Kriterium und man müsste den Indikator dann verwerfen. Das hat mir schonmal sehr weitergeholfen, nochmals danke. Wie würde man das dann verargumentieren bei der weiteren Analyse ? Lg
Normalerweise ist das recht schwierig zu begründen, eine UV aufgrund eines hohen VIF-Wertes aus dem Modell zu entfernen. Wenn er z.B. ähnliches misst, wie eine andere UV und sie deswegen so hoch korrelieren (>0,8), dann könnte man das so argumentieren. Ist aber wie gesagt ein generell schwieriges Feld.
Viele Grüße, Björn.
habe das problem das ich keine korrelation habe, die toleranz aller var. ist zwischen 0,4-0,9 also sehr gut und vif werte liegen zwischen 1-2 also auch sehr gut
aber mein R^2 ist sehr sehr klein und mein korigiertes ist sogar negativ.
woran kann es liegen?
auch die signifikanz aller variablen ist sehr schlecht 0,4-0,8 nur eine ist unter 0,05. ich habe auch über 100 fälle analysiert also denke das die anzahl ok ist.
Hallo, das kann mitunter sein. Manchmal ist das Modell i.O., zeigt sich aber nicht in den Daten. Evt. ist es eine unpassende Stichprobe oder die Operationalisierungen sind nicht passend. Das diskutiert man dann auch recht offen, was für Gründe es geben kann, dass das Modell nicht auf die Daten passt.
Viele Grüße, Björn.
Statistik am PC okay vielen dank, dann werd ich einfach darüber so schreiben und es in der ergebnisspräsentation ausdiskutieren
Das sagt meine Mami auch 🙂