Cauchy's Integral Formula | Complex Analysis | LetThereBeMath |

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 39

  • @ziyanzhu1450
    @ziyanzhu1450 3 года назад +10

    within like 5 minutes of watching this video I was able to understand what I haven't been able to get by watching 2 hours lecture recording. Thank you for making such an important theorem simple and intuitive to understand!

  • @Paulovrish7334
    @Paulovrish7334 5 лет назад +13

    The best explanation on the internet by a wide margin.....

  • @richie1603
    @richie1603 5 лет назад +6

    Been searching for 48 hours and now I've finally found ....awesome work thanks mate

  • @jiwonkim9001
    @jiwonkim9001 5 лет назад +3

    This is the best explanation of Cauchy's Theorem I've ever seen.

  • @candievalisoa1606
    @candievalisoa1606 3 года назад +1

    I wanna say thank you for your willingness to open the door to this knowledge. You just saved my grade by few percentages.

  • @SpacemanCra1g388
    @SpacemanCra1g388 4 года назад +1

    Excellent stuff. After this one 20 min video I understand these concepts better than after reading 2 chapters and watching 3 hours of lecture. Thank you for posting.

  • @MagnúsÖrvarsson
    @MagnúsÖrvarsson Месяц назад

    thank you man you just saved my life

  • @chrish9506
    @chrish9506 5 лет назад +2

    Clear, concise and easy to follow. Thanks for posting!

  • @djkwemo
    @djkwemo 4 года назад +1

    This video might have boosted my grade up 10%. Thank you a million times just subbed!!

  • @photon2724
    @photon2724 5 лет назад +3

    this channel is SUPER underrated...This guy is 10x better than khan academy. Thank You! They should be getting paid for this.

  • @TheDreamRemains
    @TheDreamRemains 6 лет назад +1

    Fantastic video. This really helped me after searching all over for good videos on the subject. Good job!!!

  • @plaustrarius
    @plaustrarius 6 лет назад +2

    I subscribed after watching this vid, nicely done, excited to watch more of these

  • @camilomuianga7865
    @camilomuianga7865 2 года назад

    nice one video and well explained

  • @MohammadMinhazUddin-zn8sw
    @MohammadMinhazUddin-zn8sw 3 года назад

    Thank you for excellently explained with examples

  • @tianqiwang5519
    @tianqiwang5519 7 лет назад +1

    your videos are saving my finals grade

  • @davisnganga6266
    @davisnganga6266 3 года назад

    Thank you sir. I needed this. Preparing for exams soon.

  • @MrniceguyMotivation
    @MrniceguyMotivation Год назад

    Well explanatory

  • @alooooshm
    @alooooshm 4 года назад

    Spot on!

  • @mnada72
    @mnada72 3 года назад

    You are Brilliant. Thank you.
    Can anyone tell me what the complex integral represents?
    What I mean is that normal integration represents area under the curve , in the complex plane what integration along a curve represents?

  • @abhisheksingh-mt4ct
    @abhisheksingh-mt4ct 6 лет назад

    good explanation with good example

  • @punitha.g6769
    @punitha.g6769 2 года назад

    Thank you so much

  • @emmy4177
    @emmy4177 Год назад

    woooow
    Good Lecturer

  • @arkansh.h.1313
    @arkansh.h.1313 5 лет назад

    thank you so much sir.
    I've got important tips from this video

  • @joelkoitaka1105
    @joelkoitaka1105 6 лет назад

    you too good with your explanation.

  • @moraarhoda9475
    @moraarhoda9475 2 года назад

    Thanks

  • @НаджихахНассер
    @НаджихахНассер 3 года назад

    Thanks a lot!

  • @DargiShameer
    @DargiShameer 4 года назад

    Good explanation

  • @kizarro1
    @kizarro1 5 лет назад +5

    how you got C1, C2 and C3

    • @amirkiev8205
      @amirkiev8205 4 года назад

      anyone you want (but that enclose the singular points) by teorema cauchy

  • @loullynms
    @loullynms 3 года назад

    gostei muito da explicação eu adorei e me ajudou bastante a explicação.

  • @Jinouga502
    @Jinouga502 4 года назад +1

    Why is the volume so low?

  • @jwan622
    @jwan622 3 года назад

    Is it important to distinguish between the function in the numerator and the function that is the integrand?

    • @l.3ok
      @l.3ok 3 года назад

      Yes, it is necessary for f(z) to be defined everywhere where you are integrating. The denominator, on the other hand, has to have exactly one pole for you to use Cauchy's integral formula.

  • @oneinabillion654
    @oneinabillion654 3 года назад

    Now that's one scary result

  • @muralidhar40
    @muralidhar40 6 лет назад +3

    Thumbs up if you want a proof of this from ‘lettherebemath’

    • @princeiwuji6721
      @princeiwuji6721 6 лет назад +1

      Murali , are you on face book?

    • @princeiwuji6721
      @princeiwuji6721 6 лет назад

      Murali, I have problems on this topics that I need solutions on

  • @santiagocas3683
    @santiagocas3683 4 года назад

    broooo,
    Why is the result of c1, c2, different from c3?, 11:57

  • @Lanskynto
    @Lanskynto Год назад

    cool