Lecture 28-Statistics of Fermions and Bosons

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 9

  • @damian.gamlath
    @damian.gamlath 4 года назад +20

    1:00 Agenda of lecture
    1:35 *Boson statistics*
    3:40 Trying to calculate the Partition Function for a system of Bosons using Canonical Ensemble (point: it doesn't work)
    12:55 Switch to Grand Canonical Ensemble to find the Partition Function (this shows why we need to use GCE for quantum stats)
    22:10 Deriving statistics for Bosons
    32:25 Bose Einstein statistics for average occupancy
    32:45 *Fermion statistics*
    37:25 Quick summary of the difference in the even/odd parity for Bosons and Fermions and how it affects statistics for such particles
    44:05 *Occupancy for both B.E. and F.D. stats*
    *NOTES*
    12:55 The reason we can't do this restricted sum is because the number of particles is limited, but number of possible energies for Bosons is infinite. So we are trying to do a sum within a sum, but one of those sums runs to infinity, but the other runs to a limited number of particles.

  • @perfectlyimperfect6849
    @perfectlyimperfect6849 7 месяцев назад

    Excellent lecture... thankyou so much sir for this crystal clear concept

  • @岡安一壽-g2y
    @岡安一壽-g2y Год назад

    Thank you sir.
    Another method
    ni:number of particles with energy εi
    gi:number of states in energy level εi
    N=Σni
    E=Σniεi
    (n1,n2,・・・,nk):distribution
    W(n1,n2,・・・,nk):the number of states that the distribution is (n1,n2,・・・,nk)
    P(n1,n2,・・・,nk):the probability that the distribution is (n1,n2,・・・,nk)
    (,,・・・,):disrribution in equilibrium
    P(n1,n2,・・・,nk)=W(n1,n2,・・・,nk)exp{-(α1+α2・・・+αN)}・exp(-βE)
    αN,β:undetermined multipliers of Lagrange's multiplier method
    Bosons
    W(n1,n2,・・・,nk)=(1/Πni!)Πgi(gi+1)・・・(gi+ni-1)
    P(n1,n2,・・・,nk)=(1/Πni!)Πgi(gi+1)・・・(gi+ni-1)・exp{-(α1+α2・・・+αN)}・Πexp(-βεi)^ni
    αN:N is the subscript of α
    In equilibrium, P(,,・・・,)=Pmax
    Since P(・・・,+1,・・・)≒P(・・・,,・・・)=Pmax
    P(・・・,+1,・・・)/P(・・・,,・・・)≒1
    Therefore
    P(・・・,+1,・・・)/P(・・・,,・・・)=(gi+)exp(-αN-βεi)/(+1)≒1

    +1≒ → 
    (gi+)exp(-αN-βεi)/≒1 (1)
    Accordingly ≒(gi+)exp(-αN-βεi)
    And N=Σ=exp(-αN)Σ(gi+)exp(-βεi)
    ∴ exp(αN)=(1/N)Σ(gi+)exp(-βεi)=ZN/N  
    where ZN≡Σ(gi+)exp(-βεi)
    Therefore αN=ln(ZN/N)
    By using (1) /gi≒1/{exp(αN+βεi)-1}=1/{(ZN/N)exp(βεi)-1}
    And P(n1,n2,・・・,nk)=(N!/Πni!)Πgi(gi+1)・・・(gi+ni-1)・1/(Z1・Z2・・・ZN)・exp(-βE)
    Fermions
    W(n1,n2,・・・,nk)=(1/Πni!)Πgi(gi-1)・・・(gi-ni+1)
    P(n1,n2,・・・,nk)=(1/Πni!)Πgi(gi-1)・・・(gi-ni+1)・exp{-(α1+α2・・・+αN)}・Πexp(-βεi)^ni
    αN:N is the subscript of α
    In equilibrium, P(,,・・・,)=Pmax
    Since P(・・・,+1,・・・)≒P(・・・,,・・・)=Pmax
    P(・・・,+1,・・・)/P(・・・,,・・・)≒1
    Therefore
    P(・・・,+1,・・・)/P(・・・,,・・・)=(gi-)exp(-αN-βεi)/(+1)≒1

    +1≒ → 
    (gi-)exp(-αN-βεi)/≒1 (2)
    Accordingly ≒(gi-)exp(-αN-βεi)
    And N=Σ=exp(-αN)Σ(gi-)exp(-βεi)
    ∴ exp(αN)=(1/N)Σ(gi-)exp(-βεi)=ZN/N  
    where ZN≡Σ(gi-)exp(-βεi)
    Therefore αN=ln(ZN/N)
    By using (2) /gi≒1/{exp(αN+βεi)+1}=1/{(ZN/N)exp(βεi)+1}
    And P(n1,n2,・・・,nk)=(N!/Πni!)Πgi(gi-1)・・・(gi-ni+1)・1/(Z1・Z2・・・ZN)・exp(-βE)

  • @ghgft
    @ghgft 3 года назад

    Thank you sir.. wonderful lecture series

  • @srinugadde4676
    @srinugadde4676 2 года назад

    Very good and nicely explained

  • @ranjitchoudhury4977
    @ranjitchoudhury4977 7 месяцев назад

    Thanks a lot.

  • @ShailendraSingh-f7u
    @ShailendraSingh-f7u 5 месяцев назад

    Too much class sir

  • @mirmohsin2986
    @mirmohsin2986 Год назад +1

    Wariyah asal

  • @ankitmishra2723
    @ankitmishra2723 3 года назад

    Thanks sir