area of polar curves, calculus 2

Поделиться
HTML-код
  • Опубликовано: 8 янв 2025

Комментарии • 138

  • @guscox9651
    @guscox9651 5 лет назад +133

    That feeling when you click because you know the area of a circle and then he starts using integrals

  • @メ乇しム尺
    @メ乇しム尺 5 лет назад +43

    Would be really funny if one of your student actually wrote down "you do it" as an answer, but then add "just kidding, here's the actual solution:" with the proof below.

    • @bernardoflores1819
      @bernardoflores1819 5 лет назад +1

      I did it once with an exam bc i didn't know how to solve the problem except I didn't wrote the actual proof lol

  • @d_mcg
    @d_mcg 5 лет назад +22

    a = (pi + 2) / 8
    b = 1 / 2

  • @GSHAPIROY
    @GSHAPIROY 5 лет назад +32

    You uploaded this less than one hour after the AP Calculus tests.

  • @TRIMISIS
    @TRIMISIS 5 лет назад +12

    "now we have find the second angle"
    Hey, that's easy, it's pi/2
    "it's not pi/2"
    Why do I even bother, honestly

  • @schizoframia4874
    @schizoframia4874 2 года назад +1

    5:43 this math problem out of context is funny

  • @frozenmoon998
    @frozenmoon998 5 лет назад +8

    You see a hard question on your test that your professor gave you to solve and you are like: The answer is = "You do it".

  • @JeffreyLByrd
    @JeffreyLByrd 5 лет назад +1

    Regarding you do it, when I took Cal II, most of the test over polar integration was just setting them up. Basically the teacher already knew that we could integrate, but the setup on these problems is the tricky part. Also my teacher favored polar curves with lots of tiny loops, so he knew a fair bit of the test would be taken up just finding the intersections and creating the graphs.

  • @6612770
    @6612770 5 лет назад +8

    Excellent coverage of all important steps and gotchas!
    I do have one criticism..
    When you deal with the "negative r" value, don't describe it as "you have to go back One". Instead of sliding your pen by One, you should 'flip' the tip of the pen over (the base stays where it is) to implement the effect of a "negative radius value" at the subject theta angle.
    😉

  • @PrashantKarmakar
    @PrashantKarmakar 2 года назад +1

    I think limits for both the integrals giving second area can be -π/2 to 0.

  • @zbr4cker117
    @zbr4cker117 5 лет назад +3

    2:43 with subtitles "for the Virgin right" lmaaaaaaaaao

    • @gamesbond006
      @gamesbond006 5 лет назад

      Lol

    • @keescanalfp5143
      @keescanalfp5143 5 лет назад

      yooh, the same at 8:30 "…only what i just besides the Virgin, of course?"
      funny, should be about points on the y-axis..

  • @drpeyam
    @drpeyam 5 лет назад +4

    Pretty 🥰

  • @YoshiActorEggman
    @YoshiActorEggman 5 лет назад +5

    upload ap calc frqs when they release!!

  • @przemysawkwiatkowski2674
    @przemysawkwiatkowski2674 5 лет назад

    8:20 „Whenever you are on the y axis the theta is either pi/2 or 3pi/2.” - actually the origin is also on the y axis, and the theta is pi/4 there. :-)

  • @roderickwhitehead
    @roderickwhitehead 5 лет назад

    I LOLd at 4:40. YOU DO IT!
    LOVE IT!

  • @djcoop4335
    @djcoop4335 5 лет назад +2

    try i^i^i^i^i^i^i^i^i^..... I tried it myself and got -1 and e^(pi/2) as answers. Thanks

  • @HelloWorld-dq5pn
    @HelloWorld-dq5pn 3 года назад +1

    I got the same result in the second one by using 3pi/2 and 2pi as lower and upper limits of integration, respectively.

    • @GaryTugan
      @GaryTugan 3 года назад +1

      and i got the same thing integrating using (-pi/2 to 0). :)

  • @federicopagano6590
    @federicopagano6590 5 лет назад

    -pi/2

  • @PinkPastelShark
    @PinkPastelShark 3 года назад +1

    Is setting the absolute values of each equation equal to each other a valid way to find the intersections without the graph? Then you could just find θ at those r values for the limits of integration. (And if the actual values are negatives of each other, you could check if the angles are off by pi, right?)

  • @KPSS12
    @KPSS12 5 лет назад +3

    Do It! Just do it! Make your dreams come true!

  • @bryanwu5829
    @bryanwu5829 3 года назад

    any student would be lucky to have u as their teacher, so easy to understand

  • @koenth2359
    @koenth2359 5 лет назад

    a. π/4-(π/8-1/4)=π/8+1/4
    b π/2-2(π/8-1/4)-π/4=1/2
    No integrals, just (quarter) circle and triangle areas

  • @Kurgosh1
    @Kurgosh1 5 лет назад

    Things I learned from this video: it's been way too long since I did anything with polar coordinates and blue pens have somehow become acceptable.

  • @tahaabujrad7806
    @tahaabujrad7806 5 лет назад

    Putting a negative sign for the radius is a mistake, because it is defined to be positive and the angle makes the direction.
    Although the integration is still the same you should integrate it from 3pi/2 to 2pi.

  • @hyperboloidofonesheet1036
    @hyperboloidofonesheet1036 5 лет назад

    r=cosΘ-sinΘ
    substitute Θ for arctan(y/x)
    converts to r=cos(arctan(y/x))-sin(arctan(y/x)
    then from the right triangle you find cos(arctan(y/x)) is x/r and sin(arctan(y/x)) is y/r
    substituting you get r=x/r-y/r
    multiply through by r you get r²=x-y
    substitute r² for x²+y² and you have x²+y²=x-y
    move everything to left side you get x²-x+y²+y=0
    complete the squares you get x²-x+1/4 + y²+y+1/4 = 1/2
    factoring you get (x-1/2)² + (y+1/2)² = 1/2
    So the other figure is indeed a circle, centered at (1/2,-1/2) with a radius of 1/√2

  • @jjeherrera
    @jjeherrera 5 лет назад +1

    There is a serious misconception of polar coordinates in this video which URGENTLY needs to be corrected:
    In polar coordinates r is ONLY defined in the domain [0,infinity), and is therefore always positive. The blue circle is displaced to a centre at (1/2,-1/2) with radius 1/2. You are right in that for this case r= cos (theta)-sin (theta), but then the domain of theta is [-3*pi/4,pi/4], which keeps r positive. THE WHOLE DOMAIN (pi/4, 5*pi/4) IS EXCLUDED. As usual, x= r*cos(theta) and y= r*sin(theta). Therefore, the circle is drawn clockwise in the allowed domain for x=[cos(theta)-sin(theta)]cos(theta), and y=[cos(theta)-sin(theta)]sin(theta). If you check it, you'll find the circle goes clockwise from (0,0) to (0,0) within this domain. The limits in your integral would then be 0 and pi/4 in your first example, and -pi/2 and 0 in the second one. The geometrical interpretation is straightforward as you can see.
    I love your videos, but I REALLY URGE you to correct this one, since it's misleading.

  • @sebinsuresh9656
    @sebinsuresh9656 5 лет назад +2

    But you get the same answer regardless of whether you pick "theta = 3*pi/2 to 2*pi" OR "theta = pi/2 to pi" ?? what's the difference.

    • @Gold161803
      @Gold161803 5 лет назад

      Either way works. Thinking parametrically, an interval from 0

  • @noradomeij4493
    @noradomeij4493 2 года назад

    Thank you for this video! I've been having a hard time with the angles when the circles aren't centered at the origin. Your explanation was great!

  • @drkiranmahabole1836
    @drkiranmahabole1836 5 лет назад +1

    TRANSFORMATION OF GRAPHS PLEASE REQUEST!!!!!

  • @zanevaughn273
    @zanevaughn273 Год назад

    Would it be easier if you equalled the two r functions together to find the bounds?

  • @Green_Eclipse
    @Green_Eclipse 5 лет назад

    I think that the first problem might be easier with basic geometry if you graph it.
    There are points at (0,0) (1,0) (0,-1) (-1,-1). Each of these points have the tan line slope of 1 or -1 so that proves that you can find the center by making normal lines at these points. Of course that could be geometric or algebraic. Then those same lines give you the radius/diameter.
    To find the segment of the circle in quadrant 1, use the triangles and circle sector formulas.
    Specifically the triangle would be from (0,0) to (1,0) to (.5,-.5)[the center of the circle]. The lines are perpendicular at the center so that angle is 90°. The area of that portion in the first quadrant can now be defined of a quarter circle minus the triangle. Which is pi/8 minus 1/4.
    Finally, the area of a quarter of the larger circle minus the section is pi/8 + 1/4.
    That seems like a lot in typing but actually isn't much. The second problem can be approached similarly but with a little bit more geometry if anyone is interested I can type it out in the comments.
    However, the important part is the number of problems that can't be solved geometrically and that's why calculus is my favorite subject and this video is entertaining and fun. Thanks BlackPenRedPen!

  • @msolec2000
    @msolec2000 5 лет назад +1

    Couldn't this be done geometrically? line y = x - 1 is a blue diameter, and for red you can do the quarter circle plus the right isosceles on the fourth quadrant...

    • @keescanalfp5143
      @keescanalfp5143 5 лет назад

      of course, we guess.
      and again, you do it!
      please observe that red quarter circle Minus the right isosceles triangle, if we understood well.
      how was exactly the question..

  • @fabiogenduso1044
    @fabiogenduso1044 4 года назад

    I am wondering on how can be the radius negative in polar coordinates. I though it should be positive by definition. Isn't the radius a length as a matter of fact? So what is the sense of r=-1?

  • @dhanujpathak3200
    @dhanujpathak3200 5 лет назад

    Please upload videos on flux, surface integrals. It would be really helpful.

  • @buxeessingh2571
    @buxeessingh2571 5 лет назад

    I must ask about all the explanations about setting the limits. When I last taught this (1995), I was told to expect that students would already know and understand about the relationship between theta and r when r is negative. Moreover, they should have already known about the fact that points where polar curves intersect would not necessarily correspond to the same (r, theta) combination. Is this not true any more?

  • @ajitfhamacademy
    @ajitfhamacademy 5 лет назад

    Thanks for your efforts.

  • @robertcotton8481
    @robertcotton8481 5 лет назад

    (Cos-sin)^2=1(cos-sin)^2=1-2cossin so we got a lot of cancellation to get first one is just plus integral of cossin and 2nd is negative of that need pen and paper to do the rest via di method

    • @robertcotton8481
      @robertcotton8481 5 лет назад

      I messed up somewhere cause now I get both answers being zero

    • @d_mcg
      @d_mcg 5 лет назад

      ​@@robertcotton8481 use the double angle identity after expanding.
      2sin(ø)cos(ø) = sin(2ø)
      cos(ø)^2 + sin(ø)^2 = 1
      1/2 ∫ (cos(ø) - sin(ø))^2 dø
      1/2 ∫ cos(ø)^2 - 2sin(ø)cos(ø) + sin(ø)^2 dø
      1/2 ∫ 1 - sin(2ø) dø
      1/2 ø + 1/4 cos(2ø) + C
      hope this helps!

  • @sensei9767
    @sensei9767 5 лет назад +2

    You could also use 3pi/2 and 2pi as boundaries, right?

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      Sensei yes

    • @justabeardedguythatisahero9848
      @justabeardedguythatisahero9848 5 лет назад +1

      @@blackpenredpen too confusing to be honest why did you assume the cooridnate ( pi , -1 ) for a point on the positive theta axis ?

    • @isaacaguilar5642
      @isaacaguilar5642 5 лет назад

      Hashrima Senju because the negative 1 makes u move back into the first quadrant so its the same thing

    • @justabeardedguythatisahero9848
      @justabeardedguythatisahero9848 5 лет назад

      @@isaacaguilar5642 explain more intutively pls

    • @keescanalfp5143
      @keescanalfp5143 5 лет назад

      @@justabeardedguythatisahero9848, well let's say, please don't confuse (x, y(x)) coordinates, orthonormal, with (thêta, r(thêta)) ones, polar. the ‘place’ bprp pointed to, is expressed in terms of x,y (+1, 0). now in polar terms of th,r both (0, 1) and (π, -1). further of course (2π, 1) and (3π, -1) &c.
      explanation needed? with thêta = 0 or 2π, 4π,… the radius axis points along the positive x-axis, then r=+1 coming up on x=+1.
      with thêta = π or 3π, 5π,… the radius axis points along the negative x-axis, that is, r>0 lies along *x

  • @drkiranmahabole1836
    @drkiranmahabole1836 5 лет назад +1

    Plz make a VEDIO on transformation of graphs plzzzzzzzzzzzsssssssssssss👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽

  • @VaradMahashabde
    @VaradMahashabde 5 лет назад +1

    well i'll let you know that 3pi/2 to 2pi also works

  • @pranavsuren9489
    @pranavsuren9489 5 лет назад

    The first curve in Cartesian is equal to:
    2xy= (x² +y²)(1-(x²+y²))
    Imagine integrating that!

  • @Mryeo5354
    @Mryeo5354 5 лет назад +3

    Aww I only know how to use Cartesian coordinates.

    • @jasonp500
      @jasonp500 5 лет назад

      Bprp: r=cos()-sin()
      Me: What is that? Is it y=cosx-sinx?
      Me: wait... ()=π/4? What is going on?

  • @sigma914
    @sigma914 5 лет назад

    Hey, bprp, could you please do a video about why the sum of 1/n! equals e?

  • @hurshutube
    @hurshutube 5 лет назад

    Pls load a video showing formula for sum 1+1/2+...+1/n.

  • @bhuvird178
    @bhuvird178 5 лет назад

    Thanks it will help in my exam

  • @alicwz5515
    @alicwz5515 5 лет назад

    Can we calculate the volume of a 3d polar function using some type of formula like this? For a function in the form:
    f(theta, alpha) = r

  • @oscartroncoso2585
    @oscartroncoso2585 5 лет назад +2

    For a sec I thought this notification was a reply from bprp and I was like wait I do it 😂

  • @JianJiaHe
    @JianJiaHe 5 лет назад +1

    They are all circles, we can do it with geometry. There are two “o’s” in “You do it”, is it a coincidence? I don’t think so.

    • @egillandersson1780
      @egillandersson1780 5 лет назад

      The second curve is NOT a circle !

    • @JianJiaHe
      @JianJiaHe 5 лет назад

      It’s a circle.

    • @JianJiaHe
      @JianJiaHe 5 лет назад

      We rewrite the function as r = a*sin(theta+b), then use the property of right triangle in a circle, we can prove that the blue one is circle. The functions like a*sin(theta+b) are all circle.

    • @egillandersson1780
      @egillandersson1780 5 лет назад

      @@JianJiaHe Soory ! You're right.

  • @VibingMath
    @VibingMath 5 лет назад +5

    Homework from bprp XD

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      Mak Vinci yup!

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      It’s actually a video from a few weeks ago.

    • @VibingMath
      @VibingMath 5 лет назад +2

      @@blackpenredpen It's ok, the world will know the area of circle soon 😁

  • @pavlegavrilovic8515
    @pavlegavrilovic8515 5 лет назад

    A:0.0535
    B:0.678

  • @CheapseaChicken
    @CheapseaChicken 5 лет назад +3

    had my ib hl math paper 2 exam today, anyone else?

    • @EricTai845
      @EricTai845 5 лет назад

      AddPrada Did you find it harder than paper 1?

    • @CheapseaChicken
      @CheapseaChicken 5 лет назад

      nah p1 was harder, did p3 calculus yesterday and was pre easy. wbu

  • @egillandersson1780
    @egillandersson1780 5 лет назад

    I like the "you do it", then I did it : pi/8 for the first and 1/2 for the second. Right ?

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      Egill Andersson yes! : )))

    • @federicopagano6590
      @federicopagano6590 5 лет назад

      Couldn't we define in the second example that -pi/2

    • @cerberus0225
      @cerberus0225 5 лет назад +1

      @@blackpenredpen I think I have to disagree. I'm trying them myself, went through them, and double-checked my answers with Wolfram Alpha, and I didn't get pi/8 for the first answer. Instead, I got (pi+2)/8. Here's my math as best as I can enter it into here.
      So obviously the first integral is pi/4, and we can check this geometrically by just seeing that it's a quarter of a circle with radius 1. The area of such a circle is pi, so a quarter of it is pi/4, and this is a straightforward integral anyway.
      Now for the second integral, the integral from 0 to pi/4 of 1/2(cos(theta)-sin(theta))^2 d(theta).
      First, let's work out that square, to get the integral from 0 to pi/4 of 1/2(cos^2(theta)+sin^2(theta)-2*cos(theta)*sin(theta)) d(theta).
      We simplify this with one of our favorite identities and get the integral from 0 to pi/4 of 1/2(1 - 2*cos(theta)*sin(theta)) d(theta).
      We can break this apart into two integrals and get the integral from 0 to pi/4 of 1/2*(1) d(theta) - the integral from 0 to pi/4 of 1/2*2*cos(theta)*sin(theta) d(theta).
      Focusing on the first of those, it's simply the integral from 0 to pi/4 of 1/2 d(theta). This is a straightforward integral and yields pi/8.
      For the second integral, we simplify it to the integral from 0 to pi/4 of cos(theta)*sin(theta) d(theta). This seems tricky, but it's easy enough to do a u-substitution with u = sin(theta), du = cos(theta) d(theta), and change the integral bounds from 0 to pi/4 into 0 to sqrt(2)/2. We now have the integral from 0 to sqrt(2)/2 of u du. This gives us 1/2 u^2 evaluated from 0 to sqrt(2)/2, which becomes 1/2(1/2-0) = 1/4.
      Now we take our three results and add or subtract as is appropriate. We should have pi/4 - pi/8 + 1/4, which first simplifies to pi/8 + 1/4. If we want, we can rewrite this as (pi+2)/8.
      For the second problem, I followed a very similar method (seeing as the integrals have only changed in their orders and boundaries, this isn't too complicated) and got 1/2, the same as the poster above.

  • @WillToWinvlog
    @WillToWinvlog 5 лет назад

    I figured out a way to solve this with geometry alone!

  • @peterchan6082
    @peterchan6082 5 лет назад

    The real challenge . . . solve them WITHOUT using calculus AT ALL. Just use plane geometry.
    You crack a nut every time with a sledge hammer, that's a sure win but far less fun. Crack it with a usual nutcracker and you'll get a lot more fun.

    • @spacefertilizer
      @spacefertilizer 5 лет назад

      I think it's easier without calculus. I took courses for learning this a long time ago and had forgotten how to do it with calculus. With plane geometry it was straightforward with just adding and subtracting parts.

  • @DrewAsWellAs
    @DrewAsWellAs 5 лет назад

    Can’t you solve algebraically using area of segments and subtracting the segment area from big circle? I tried to do it and I might have made a mistake but I got quantity PI + 2 all over 8

    • @spacefertilizer
      @spacefertilizer 5 лет назад

      I solved it by ordinary geometry and algebra and got it right. First one should be (pi+2)/8 and the second one should be 1/2. edit: i saw now that you answered this a long time ago, but maybe someone else who searches the comments would like to know.

  • @alexasdwe
    @alexasdwe 3 года назад

    The answer for the first us (pi-sqrt(8)+2)/4

  • @nazeerahamed3857
    @nazeerahamed3857 5 лет назад

    Which univ are you from?

  • @ezras7997
    @ezras7997 5 лет назад

    Oh no, geometry.

  • @ramadanierdogan
    @ramadanierdogan 5 лет назад +1

    Nice

  • @henrybeenh7076
    @henrybeenh7076 5 лет назад

    I got (pi + 1)/4 and 1/2.

  • @yyanr7834
    @yyanr7834 5 лет назад

    Thank u man

  • @pukkandan
    @pukkandan 5 лет назад

    But the fun part is to solve this without calculus

  • @Daniel-ge1rt
    @Daniel-ge1rt 5 лет назад

    What is the thing called after d?

  • @SlenderCamGaming
    @SlenderCamGaming 5 лет назад

    Writing "You do it" is the easiest way to do well in a test. You just have to hope the examiner is good at maths or will cheat by using the mark scheme.

  • @obinnanwakwue5735
    @obinnanwakwue5735 5 лет назад

    a) pi/8 + 1/2
    b) 1/2

    • @Ni999
      @Ni999 5 лет назад

      Double check your work. 😉

    • @obinnanwakwue5735
      @obinnanwakwue5735 5 лет назад

      @@Ni999 wrong signs?

    • @Ni999
      @Ni999 5 лет назад

      @@obinnanwakwue5735 On the second one, yes. On the first one you (probably) have a sign wrong on the way to the final answer (I did too). Your self-checking hint for these kind of questions is that you're looking for area, answers must be positive.

    • @obinnanwakwue5735
      @obinnanwakwue5735 5 лет назад

      @@Ni999 oh I get it I jacked up with the sign integrating one of the functions in the first problem, that should be + 1/2 and in the second one that should be 1/2 as well. Let me edit that.

    • @Ni999
      @Ni999 5 лет назад

      @@obinnanwakwue5735 π/4 is the area of a full quarter red circle, the first problem is less than that, less than 0.785.
      (π/8) + ½ ≈ 0.893
      Double check your terms, you're close.
      Second one is correct.

  • @Archik4
    @Archik4 5 лет назад

    2+2=you do it.

  • @呂永志-x7o
    @呂永志-x7o 5 лет назад

    第二題角度要怎麼判斷?用零代入還是在同一個點。

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      呂永志 因為下面已經是π/2,所以我們必須用π

    • @呂永志-x7o
      @呂永志-x7o 5 лет назад

      對,你英文是這樣說的。但我的意思是,如果沒有前一個角度,其實這角度不能確定對嗎?

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      呂永志
      對 “要找鄰居”
      我們也可用-π/2 to 0

    • @呂永志-x7o
      @呂永志-x7o 5 лет назад

      @@blackpenredpen 這題圖不算複雜所以可行,但我想有些圖不易這樣判斷。

    • @blackpenredpen
      @blackpenredpen  5 лет назад +1

      呂永志 是啊 我有算這個算到快瘋掉的時候

  • @francis590
    @francis590 3 года назад

    you do it

  • @alephii
    @alephii 5 лет назад +2

    this guy loves to hold balls!

  • @yaleng4597
    @yaleng4597 5 лет назад +1

    If I wre your students and I have time in the test, I will write 'you do it' and then cross it out, and give the correct answer below it. XD

  • @alejrandom6592
    @alejrandom6592 3 года назад

    = you do it

  • @TttT-xc8lq
    @TttT-xc8lq 5 лет назад

    I solve the peoblem without integral

  • @habouzhaboux9488
    @habouzhaboux9488 5 лет назад

    Redpenbluepen, not much of black pen

  • @drkiranmahabole1836
    @drkiranmahabole1836 5 лет назад +1

    If u have guts sir then try to solve JEE MAINS AND ADVANCE PAPER because it is the toughest paper in the world

    • @blackpenredpen
      @blackpenredpen  5 лет назад

      Kiran Mahabole
      Why is it the toughest test?

  • @vladislav_artyukhov
    @vladislav_artyukhov 5 лет назад

    We havr homework😂

  • @mdx3227
    @mdx3227 5 лет назад

    The asnwer its why!? xD

  • @jennie8735
    @jennie8735 25 дней назад

    i love you

  • @stuartyellow1679
    @stuartyellow1679 5 лет назад

    First I did it without any integral. I guess its way easier ;) But than I doublechecked it with your integrals :) Im happy that I got the same results xD

  • @seroujghazarian6343
    @seroujghazarian6343 5 лет назад

    The first one is (pi-2)/8

    • @d1o2c3t4o5r
      @d1o2c3t4o5r 5 лет назад +3

      Serouj Ghazarian i got (pi + 2)/8

    • @p.singson3910
      @p.singson3910 5 лет назад

      Let me make you both happy by settling for (π±2)/8😁

    • @seroujghazarian6343
      @seroujghazarian6343 5 лет назад

      @@d1o2c3t4o5r d it! I accidently put theta-(cos(2theta))/2 instead of theta+(cos(theta))/2

    • @seroujghazarian6343
      @seroujghazarian6343 5 лет назад

      And the second one gives you....
      One! Wow!