Solving A Differential Equation | 2nd method?

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 20

  • @umut1269
    @umut1269 9 месяцев назад +1

    4:38 sarı laciverti bir arada görmek sevindirdi 😅 as always, great explanation and showing how to approach to a problem. Yours and these kind of channels keeps my passion about math always sharp and alive .

    • @SyberMath
      @SyberMath  9 месяцев назад

      Thanks! 😃

    • @leif1075
      @leif1075 9 месяцев назад

      ​@SyberMath Thanks for sharing Syber. I don't mean to bother you but I hope you can please respond to my question about sum of squares integers formula.

  • @cameronspalding9792
    @cameronspalding9792 6 месяцев назад

    @ 7:32 you need to include the +1 on the numerator

  • @holyshit922
    @holyshit922 9 месяцев назад

    Bernoulli equation
    Here exists integrating factor
    mu(x,y) = exp((1-r)Int(p(x),x))y^{-r}
    but it can be solved by assuming that y(x)=u(x)v(x)
    and solving separable equation twice
    y'=(x-y^2+1)/(2xy)
    y' = -y/(2x) + (x+1)/(2x)*1/y
    y'+1/(2x)y = (x+1)/(2x)*1/y
    p(x) = 1/(2x)
    r = -1
    mu(x,y) = exp((1-(-1))Int(1/(2x),x))y^{-(-1)}
    mu(x,y) = exp(ln(x))y^{1}
    mu(x,y) = xy
    xyy'+1/2y^2 = (x-1)/2
    d/dx(x*1/2y^2) = d/dx(1/4(x+1)^2)
    1/2xy^2 = 1/4(x+1)^2+C_{1}
    y^2 = 1/2(x+1)^2/x+C/x

  • @florianbuerzle2703
    @florianbuerzle2703 9 месяцев назад

    You could separate the fraction and thus rewrite the DE as
    y' + (1 / (2x)) y = (1/2 + 1 / (2x)) y^(-1),
    so it has the form
    y' + P(x) y = Q(x) y^(-1)
    and is therefore a Bernoulli differential equation which can be solved using the substitution u = y², which leads to the equation du/dx + u/x = 1 + 1/x
    and multiplying this by x gives
    x du/dx + u = x + 1
    which is equivalent to
    x du + (u - x - 1) dx = 0.
    This is an exact differential equation with the solution
    ux - x²/2 - x = c
    or
    u = c/x + x/2 + 1
    and therefore
    y = sqrt( c/x + x/2 + 1 ) or -sqrt( c/x + x/2 + 1 )

    • @SyberMath
      @SyberMath  9 месяцев назад +1

      Nice. Thank you!

    • @leif1075
      @leif1075 9 месяцев назад

      Or why not set dy/dx equal to u and solve this way. What if you are not familiar with Bernoulli differential equation ?

  • @michaelbaum6796
    @michaelbaum6796 9 месяцев назад

    Nice ode👍

  • @broytingaravsol
    @broytingaravsol 9 месяцев назад

    very easy

    • @SyberMath
      @SyberMath  9 месяцев назад

      Thanks a lot 😊

  • @tarunmnair
    @tarunmnair 9 месяцев назад

    What about the other solution ? The -ve of y ?

    • @SyberMath
      @SyberMath  9 месяцев назад

      It’s similar

  • @tiagocantuario5424
    @tiagocantuario5424 9 месяцев назад

    You missed the "+1" From "x-y^2+1" When you tried to check the positive solution :v

  • @張茗茗-y9i
    @張茗茗-y9i 9 месяцев назад

    x^2/2-xy^2+x=c

  • @mcwulf25
    @mcwulf25 9 месяцев назад

    Was that scripted?

    • @SyberMath
      @SyberMath  9 месяцев назад +1

      Why?

    • @mcwulf25
      @mcwulf25 9 месяцев назад +1

      @SyberMath The end when you didn't know then you did. Wondering if that was drama 🤔