Explaining logistic regression

Поделиться
HTML-код
  • Опубликовано: 25 ноя 2024

Комментарии • 11

  • @RyeCA
    @RyeCA 7 часов назад +4

    I have an exercise just on that topic, excellent timing!

  • @MKhan-zo8xo
    @MKhan-zo8xo 3 часа назад

    brilliant, brilliant video, the way you explain the relationships between important concepts is gold to me

  • @olivierchabot
    @olivierchabot 2 часа назад

    Good stuff. Keep it up!

  • @AbdallahBoukouffallah
    @AbdallahBoukouffallah 7 часов назад +4

    tomorrow i have a machine learning exam, just on time 😂😂😂😂😂😂😂

  • @g-whittington
    @g-whittington 7 часов назад

    Great as always

  • @galenseilis5971
    @galenseilis5971 7 часов назад +1

    Under typical assumptions of IID samples I can see how we get to asymptotically normal sampling distributions for estimates from MLE, and for sufficiently large samples we will have estimates with sampling distributions are that practically close enough to normal. It is not true in general that estimates from MLE will follow a normal distribution.

    • @very-normal
      @very-normal  7 часов назад +1

      Yea you’re right. I’m speaking from the perspective that we can use those typical assumptions, not from a more general one

  • @kristianwichmann9996
    @kristianwichmann9996 3 часа назад

    That likelihood is definitely not convex!

    • @very-normal
      @very-normal  2 часа назад

      haha that’s definitely my poor manim skills showing

  • @HillFrey247
    @HillFrey247 6 часов назад

    Could you please explain completeness or complete statistic