International Mathematical Olympiad 1978 Problem 1

Поделиться
HTML-код
  • Опубликовано: 13 дек 2024

Комментарии • 17

  • @yoav613
    @yoav613 3 года назад +11

    This factorization 1978^m(1978^n-m -1) made the solution so simple!

  • @mcwulf25
    @mcwulf25 3 года назад +1

    Good question, well explained. Thanks prof.

  • @satyapalsingh4429
    @satyapalsingh4429 3 года назад +1

    Explained nicely

  • @yoav613
    @yoav613 3 года назад +3

    Really great video

  • @Goku_is_my_idol
    @Goku_is_my_idol 3 года назад +1

    This was awesome
    I learnt new things today
    Thnx

  • @niceroundtv
    @niceroundtv 3 года назад +3

    10:53 nice

  • @xaxi222
    @xaxi222 5 месяцев назад

    If n-m must be multiple of 100 (i.e. n-m≥100) and also m≥1, doesn't that mean that min(n+m) is for n=101 and m=1, thus min(n+m)=102? And obviously 101=n≥3, so that also checks out in this case, so isn't the answer 102 instead of 106 or am I missing something?

  • @daoudandiaye4636
    @daoudandiaye4636 3 года назад

    👏👏👏

  • @sharathpr42
    @sharathpr42 3 года назад +3

    106?

  • @cheukyiryanlo943
    @cheukyiryanlo943 3 года назад +5

    day 6969 of waiting for official discord server

  • @flyingdutchsam1960
    @flyingdutchsam1960 3 года назад

    Ow do you calculate what is congruent to 1978^4 in modulus 125? How’s you get (-22)^4

  • @flyingdutchsam1960
    @flyingdutchsam1960 3 года назад

    How did you set k = to -22^4?

  • @flyingdutchsam1960
    @flyingdutchsam1960 3 года назад

    How did you know that (1978)^4 is congruent to (-22)^4 mod (125) can you explain?

  • @assport1227
    @assport1227 3 года назад

    How to divide by zero

  • @assport1227
    @assport1227 3 года назад

    Your content is great but you have to work on your writing skills
    Or you can just type and animate like @mind your decision