The many forms of Navier-Stokes

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии • 33

  • @BatistaR0X
    @BatistaR0X 6 лет назад +8

    I have only watched two of your videos and they are of superior quality in terms of your way of explaining man. And i am really impressed by your level of humbleness by saying leave any criticism comments. Your videos are really helpful for fluid mechanics students

  • @yassinkissami9126
    @yassinkissami9126 6 лет назад +6

    Man, you have literally saved me after I have been going crazy with these books that cant explain anything clearly!! Thanks Alot bruv..

  • @antoine1407
    @antoine1407 3 года назад +1

    One of the best video about Navier- Stokes equations, thank you so much

  • @toseektruth3764
    @toseektruth3764 6 лет назад +3

    Leonardo: Please check in 30:44. I think there is a correction in convective acceleration term numbering. It should u1, u2 and u3 in the matrix form. Please correct me if I am wrong.

    • @engineer_leo
      @engineer_leo  6 лет назад

      You are correct. Each line corresponds, respectively, to the derivatives of u1, u2 and u3.

  • @oskarloeprecht7579
    @oskarloeprecht7579 4 года назад +1

    Thanks a lot man! I've been trying to understand the navier stokes equation in einsteins notation for hours, now i've got it!

  • @erisawante1328
    @erisawante1328 2 года назад +1

    Thanks for these well explained videos on Navier-Stokes aquations, I appreciate your work and your time, I salute you Professor . Do you have a video on axisymmetric Navier-Stokes equations?

  • @djdelta777
    @djdelta777 4 года назад +1

    Just what I needed. And so clearly explained. Thanks

  • @bomgulder
    @bomgulder 6 лет назад +1

    Thank you very much for your time. I have benefited from it

  • @vioco
    @vioco 7 дней назад

    I was looking for the Stokes form of NS.

  • @omarasbun9188
    @omarasbun9188 2 года назад

    Hello loved your videos, is there any way to download the notes you made for this video?

  • @trololollolololololl
    @trololollolololololl 5 лет назад +1

    very nicely made, especally einsteins notation now I understand it

  • @pameladahl9588
    @pameladahl9588 6 лет назад +2

    Muito didático, Leonardo! Vou passar para meus colegas do LASME/PEN na UFRJ.
    Maybe later, something for compressible fluids?

    • @engineer_leo
      @engineer_leo  6 лет назад

      Muito obrigado! Thanks! I'll try to make some video about compressible fluids later. Best regards

  • @CallumSamuels
    @CallumSamuels 3 года назад

    Great video! Thanks

  • @slim590
    @slim590 Год назад

    can you talk abour kronecker delta ?

  • @turtleindia417
    @turtleindia417 6 лет назад +1

    Hey Leonardo, thanks again for detailed mathematical forms of NS. :)
    Just one clarification reqd: towards the end of the video, in the compact form of NS, shouldn't the RHS be "Partial Diff of [Sigma]ij wrt xj", you used "xi" !

    • @engineer_leo
      @engineer_leo  6 лет назад +1

      You are correct. It is "j" instead of "i" in the partial derivative of the stress tensor.

  • @fetenadisasadiribsa9704
    @fetenadisasadiribsa9704 5 лет назад +2

    it is helpful lecturer. but how can we drive Navier-Stokes equation of elastic solid body??????

    • @engineer_leo
      @engineer_leo  5 лет назад

      Then it is not called "Navier-Stokes" equation. There is something called "Navier equations", which is the equations Navier derived for elasticity (solids). It would be a interesting topic for a video.

  • @AmirrezaEghbali-w4r
    @AmirrezaEghbali-w4r Год назад

    i just can appreciate you , 👍🙏🌹

  • @dilharawickramasinghe7121
    @dilharawickramasinghe7121 4 года назад +1

    Very helpful. Thank you.

  • @williamschacht
    @williamschacht 6 лет назад

    Excellent work!

  • @LiuyoMZ
    @LiuyoMZ 5 лет назад +1

    Ótimos vídeos!

  • @slim590
    @slim590 Год назад

    you have made a mitake in the equation around 31 mins. mistake is in du1/dx1 vectors

  • @yasirghani7017
    @yasirghani7017 3 года назад

    thank you

  • @slim590
    @slim590 2 года назад

    Thank you 💓💓💓💓 (no homo)